Multi-rate Co-simulation Framework with Taylor-series-based Variable-step Solver for Grid-connected Power Converters*

Q1 Engineering
Weicheng Liu;Zhengming Zhao;Han Xu;Yangbin Zeng;Liqiang Yuan
{"title":"Multi-rate Co-simulation Framework with Taylor-series-based Variable-step Solver for Grid-connected Power Converters*","authors":"Weicheng Liu;Zhengming Zhao;Han Xu;Yangbin Zeng;Liqiang Yuan","doi":"10.23919/CJEE.2025.000111","DOIUrl":null,"url":null,"abstract":"Grid-connected converters (GPC) are playing an increasingly important role in distribution networks. Performing electromagnetic transient (EMT) simulations on power electronics and distribution networks can significantly improve the analysis accuracy. However, the existing simulation software struggles to handle distribution networks with a large number of power electronic switches, leading to unacceptable simulation times. To address this issue, a system-hierarchical multi-rate co-simulation framework is proposed. The system is hierarchically divided into different rate subsystems based on timescales, and solvers with different simulation rates are used to solve them separately. A Taylor-series-based variable-step solver is proposed for power electronic systems, and numerical compensation algorithms are designed for multi-rate interfaces to improve the system stability and accuracy. Compared with commercial software, the proposed framework increased the simulation speed by more than 200 times in the studied case, involving 576 switching devices and 14 bus distribution networks, while contributing less than 1% to the relative error.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":"11 1","pages":"59-73"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10955323","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10955323/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Grid-connected converters (GPC) are playing an increasingly important role in distribution networks. Performing electromagnetic transient (EMT) simulations on power electronics and distribution networks can significantly improve the analysis accuracy. However, the existing simulation software struggles to handle distribution networks with a large number of power electronic switches, leading to unacceptable simulation times. To address this issue, a system-hierarchical multi-rate co-simulation framework is proposed. The system is hierarchically divided into different rate subsystems based on timescales, and solvers with different simulation rates are used to solve them separately. A Taylor-series-based variable-step solver is proposed for power electronic systems, and numerical compensation algorithms are designed for multi-rate interfaces to improve the system stability and accuracy. Compared with commercial software, the proposed framework increased the simulation speed by more than 200 times in the studied case, involving 576 switching devices and 14 bus distribution networks, while contributing less than 1% to the relative error.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Electrical Engineering
Chinese Journal of Electrical Engineering Energy-Energy Engineering and Power Technology
CiteScore
7.80
自引率
0.00%
发文量
621
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信