Review of Modeling and Analysis of Parasitics in Power Electronic Converters*

Q1 Engineering
Jianing Wang;Mingkai Chen;Shaolin Yu;Xing Zhang
{"title":"Review of Modeling and Analysis of Parasitics in Power Electronic Converters*","authors":"Jianing Wang;Mingkai Chen;Shaolin Yu;Xing Zhang","doi":"10.23919/CJEE.2025.000103","DOIUrl":null,"url":null,"abstract":"The generation of power semiconductor devices defines a generation of power electronic converters. The efficiency and switching speed of power devices continue to improve, leading to higher converter operating frequencies and a continuous increase in power density. In particular, the emergence and widespread application of wide-bandgap power devices, such as silicon carbide and gallium nitride, have accelerated the process of high-frequency converter operations, significantly improving the power density of converters, which still have considerable room for improvement. One significant change brought about by high-frequency operation of converters is the increased impact of parasitics on circuit operation. With the significant increase in the system switching frequency and the dv/dt and di/dt of device switching, parasitics have a greater influence on circuit operation. Over the past decade, several studies on the analysis and modeling of parasitics have been published for various devices in converters, such as transformers, inductors, capacitors, and power devices; however, there is currently a lack of a comprehensive review to summarize the above research. A detailed summary of parasitics in power electronic converters is included, providing a systematic understanding of past work and future prospects.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":"11 1","pages":"151-173"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10955298","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10955298/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The generation of power semiconductor devices defines a generation of power electronic converters. The efficiency and switching speed of power devices continue to improve, leading to higher converter operating frequencies and a continuous increase in power density. In particular, the emergence and widespread application of wide-bandgap power devices, such as silicon carbide and gallium nitride, have accelerated the process of high-frequency converter operations, significantly improving the power density of converters, which still have considerable room for improvement. One significant change brought about by high-frequency operation of converters is the increased impact of parasitics on circuit operation. With the significant increase in the system switching frequency and the dv/dt and di/dt of device switching, parasitics have a greater influence on circuit operation. Over the past decade, several studies on the analysis and modeling of parasitics have been published for various devices in converters, such as transformers, inductors, capacitors, and power devices; however, there is currently a lack of a comprehensive review to summarize the above research. A detailed summary of parasitics in power electronic converters is included, providing a systematic understanding of past work and future prospects.
电力电子变换器中的寄生特性建模与分析综述*
功率半导体器件的产生定义了功率电子变换器的一代。功率器件的效率和开关速度不断提高,导致变换器工作频率更高,功率密度不断增加。特别是碳化硅、氮化镓等宽禁带功率器件的出现和广泛应用,加速了变换器高频工作的进程,显著提高了变换器的功率密度,仍有相当大的提升空间。变换器高频工作带来的一个重要变化是寄生对电路工作的影响越来越大。随着系统开关频率和器件开关的dv/dt和di/dt的显著增加,寄生对电路工作的影响越来越大。在过去的十年中,已经发表了一些关于各种变换器器件的寄生分析和建模的研究,如变压器、电感、电容器和功率器件;然而,目前还缺乏一个全面的综述来总结上述研究。本文对电力电子变换器中的寄生现象进行了详细的总结,对过去的工作和未来的展望提供了系统的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Electrical Engineering
Chinese Journal of Electrical Engineering Energy-Energy Engineering and Power Technology
CiteScore
7.80
自引率
0.00%
发文量
621
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信