Fengyi Huang , Wenhua Wang , Jianxiong Guo , Wentao Fan , Yang Xu , Tian Wang , Jiannong Cao
{"title":"Price-aware resource management for multi-modal DNN inference in collaborative heterogeneous edge environments","authors":"Fengyi Huang , Wenhua Wang , Jianxiong Guo , Wentao Fan , Yang Xu , Tian Wang , Jiannong Cao","doi":"10.1016/j.jpdc.2025.105080","DOIUrl":null,"url":null,"abstract":"<div><div>To address the limitations of ARM64-based AI edge devices, which are energy-efficient but computationally constrained, as well as general-purpose edge servers, this paper proposes a multi-modal CollaborativeHeterogeneous Edge Computing (CHEC) architecture that achieves low latency and enhances computational capabilities. The CHEC framework, which is segmented into an edge private cloud and an edge public cloud, endeavors to optimize the profits of Edge Service Providers (ESPs) through dynamic heterogeneous resource management. In particular, it is achieved by formulating the challenge as a multi-stage Mixed-Integer Nonlinear Programming (MINLP) problem. We introduce a resource collaboration system based on resource leasing incorporating three Economic Payment Models (EPMs), ensuring efficient and profitable resource utilization. To tackle this complex issue, we develop a three-layer Hybrid Deep Reinforcement Learning (HDRL) algorithm with EPMs, HDRL-EPMs, for efficient management of dynamic and heterogeneous resources. Extensive simulations confirm the algorithm's ability to ensure convergence and approximate optimal solutions, significantly outperforming existing methods. Testbed experiments demonstrate that the CHEC architecture reduces latency by up to 21.83% in real-world applications, markedly surpassing previous approaches.</div></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"201 ","pages":"Article 105080"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731525000474","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
To address the limitations of ARM64-based AI edge devices, which are energy-efficient but computationally constrained, as well as general-purpose edge servers, this paper proposes a multi-modal CollaborativeHeterogeneous Edge Computing (CHEC) architecture that achieves low latency and enhances computational capabilities. The CHEC framework, which is segmented into an edge private cloud and an edge public cloud, endeavors to optimize the profits of Edge Service Providers (ESPs) through dynamic heterogeneous resource management. In particular, it is achieved by formulating the challenge as a multi-stage Mixed-Integer Nonlinear Programming (MINLP) problem. We introduce a resource collaboration system based on resource leasing incorporating three Economic Payment Models (EPMs), ensuring efficient and profitable resource utilization. To tackle this complex issue, we develop a three-layer Hybrid Deep Reinforcement Learning (HDRL) algorithm with EPMs, HDRL-EPMs, for efficient management of dynamic and heterogeneous resources. Extensive simulations confirm the algorithm's ability to ensure convergence and approximate optimal solutions, significantly outperforming existing methods. Testbed experiments demonstrate that the CHEC architecture reduces latency by up to 21.83% in real-world applications, markedly surpassing previous approaches.
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.