{"title":"Embedded scaffolding for teaching and assessing inquiry-based hands-on laboratory on distributed systems","authors":"Jordi Guitart","doi":"10.1016/j.jpdc.2025.105082","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><div>Information Technology education must cultivate proficiency on distributed systems, including strong hands-on laboratory skills, to meet the needs of the society and the industry. Given the complexity of distributed systems, any successful methodology to teach them to novice students must be scaffolded appropriately to ensure that the students acquire the required degree of expertise.</div></div><div><h3>Objective</h3><div>We propose a comprehensive scaffolding approach for inquiry-based hands-on laboratory on a distributed systems course, which guides not only the learning process, but also its assessment. The approach is based mainly on embedded scaffolds, namely explicit coding and experimental milestones and open questions with predefined grades, but also features contingent scaffolds provided by the teacher when additional assistance is needed.</div></div><div><h3>Method</h3><div>We apply the methodology in the context of the subject ‘Distributed Network Systems’ offered by our university. We compare the students' performance during three academic courses using the proposed methodology with respect to the three previous courses that were still using the former methodology. We use both visual representations and planned Analysis of Variance (ANOVA) tests to verify our hypothesis defined as a complex contrast.</div></div><div><h3>Findings</h3><div>We find that there is a statistically significant improvement in the students' performance when using the new methodology, both in their grades of the assignments (<em>F</em>(1, 75.364) = 17.770, <span><math><mi>p</mi><mo>=</mo><mn>6.85</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup></math></span>) and, more importantly, also in their grades of the exam questions about the practicals (<em>F</em>(1, 123.186) = 13.285, <span><math><mi>p</mi><mo>=</mo><mn>3.93</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></math></span>).</div></div><div><h3>Implications</h3><div>Our results encourage other instructors to incorporate embedded scaffolds for teaching and assessing their hands-on laboratories on distributed systems.</div></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"201 ","pages":"Article 105082"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731525000498","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Context
Information Technology education must cultivate proficiency on distributed systems, including strong hands-on laboratory skills, to meet the needs of the society and the industry. Given the complexity of distributed systems, any successful methodology to teach them to novice students must be scaffolded appropriately to ensure that the students acquire the required degree of expertise.
Objective
We propose a comprehensive scaffolding approach for inquiry-based hands-on laboratory on a distributed systems course, which guides not only the learning process, but also its assessment. The approach is based mainly on embedded scaffolds, namely explicit coding and experimental milestones and open questions with predefined grades, but also features contingent scaffolds provided by the teacher when additional assistance is needed.
Method
We apply the methodology in the context of the subject ‘Distributed Network Systems’ offered by our university. We compare the students' performance during three academic courses using the proposed methodology with respect to the three previous courses that were still using the former methodology. We use both visual representations and planned Analysis of Variance (ANOVA) tests to verify our hypothesis defined as a complex contrast.
Findings
We find that there is a statistically significant improvement in the students' performance when using the new methodology, both in their grades of the assignments (F(1, 75.364) = 17.770, ) and, more importantly, also in their grades of the exam questions about the practicals (F(1, 123.186) = 13.285, ).
Implications
Our results encourage other instructors to incorporate embedded scaffolds for teaching and assessing their hands-on laboratories on distributed systems.
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.