Moxuan Ma , Muyu Wang , Lan Wei , Xiaolu Fei , Hui Chen
{"title":"Multi-modal fusion model for Time-Varying medical Data: Addressing Long-Term dependencies and memory challenges in sequence fusion","authors":"Moxuan Ma , Muyu Wang , Lan Wei , Xiaolu Fei , Hui Chen","doi":"10.1016/j.jbi.2025.104823","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Multi-modal time-varying data continuously generated during a patient’s hospitalization reflects the patient’s disease progression. Certain patient conditions may be associated with long-term states, which is a weakness of current medical multi-modal time-varying data fusion models. Daily ward round notes, as time-series long texts, are often neglected by models.</div></div><div><h3>Objective</h3><div>This study aims to develop an effective medical multi-modal time-varying data fusion model capable of extracting features from long sequences and long texts while capturing long-term dependencies.</div></div><div><h3>Methods</h3><div>We proposed a model called medical multi-modal fusion for long-term dependencies (MMF-LD) that fuses time-varying and time-invariant, tabular, and textual data. A progressive multi-modal fusion (PMF) strategy was introduced to address information loss in multi-modal time series fusion, particularly for long time-varying texts. With the integration of the attention mechanism, the long short-term storage memory (LSTsM) gained enhanced capacity to extract long-term dependencies. In conjunction with the temporal convolutional network (TCN), it extracted long-term features from time-varying sequences without neglecting the local contextual information of the time series. Model performance was evaluated on acute myocardial infarction (AMI) and stroke datasets for in-hospital mortality risk prediction and long length-of-stay prediction. area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), and F1 score were used as evaluation metrics for model performance.</div></div><div><h3>Results</h3><div>The MMF-LD model demonstrated superior performance compared to other multi-modal time-varying data fusion models in model comparison experiments (AUROC: 0.947 and 0.918 in the AMI dataset, and 0.965 and 0.868 in the stroke dataset; AUPRC: 0.410 and 0.675, and 0.467 and 0.533; F1 score: 0.658 and 0.513, and 0.684 and 0.401). Ablation experiments confirmed that the proposed PMF strategy, LSTsM, and TCN modules all contributed to performance improvements as intended.</div></div><div><h3>Conclusions</h3><div>The proposed medical multi-modal time-varying data fusion architecture addresses the challenge of forgetting time-varying long textual information in time series fusion. It exhibits stable performance across multiple datasets and tasks. It exhibits strength in capturing long-term dependencies and shows stable performance across multiple datasets and tasks.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"165 ","pages":"Article 104823"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425000528","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Multi-modal time-varying data continuously generated during a patient’s hospitalization reflects the patient’s disease progression. Certain patient conditions may be associated with long-term states, which is a weakness of current medical multi-modal time-varying data fusion models. Daily ward round notes, as time-series long texts, are often neglected by models.
Objective
This study aims to develop an effective medical multi-modal time-varying data fusion model capable of extracting features from long sequences and long texts while capturing long-term dependencies.
Methods
We proposed a model called medical multi-modal fusion for long-term dependencies (MMF-LD) that fuses time-varying and time-invariant, tabular, and textual data. A progressive multi-modal fusion (PMF) strategy was introduced to address information loss in multi-modal time series fusion, particularly for long time-varying texts. With the integration of the attention mechanism, the long short-term storage memory (LSTsM) gained enhanced capacity to extract long-term dependencies. In conjunction with the temporal convolutional network (TCN), it extracted long-term features from time-varying sequences without neglecting the local contextual information of the time series. Model performance was evaluated on acute myocardial infarction (AMI) and stroke datasets for in-hospital mortality risk prediction and long length-of-stay prediction. area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), and F1 score were used as evaluation metrics for model performance.
Results
The MMF-LD model demonstrated superior performance compared to other multi-modal time-varying data fusion models in model comparison experiments (AUROC: 0.947 and 0.918 in the AMI dataset, and 0.965 and 0.868 in the stroke dataset; AUPRC: 0.410 and 0.675, and 0.467 and 0.533; F1 score: 0.658 and 0.513, and 0.684 and 0.401). Ablation experiments confirmed that the proposed PMF strategy, LSTsM, and TCN modules all contributed to performance improvements as intended.
Conclusions
The proposed medical multi-modal time-varying data fusion architecture addresses the challenge of forgetting time-varying long textual information in time series fusion. It exhibits stable performance across multiple datasets and tasks. It exhibits strength in capturing long-term dependencies and shows stable performance across multiple datasets and tasks.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.