Dynamic fog computing for enhanced LLM execution in medical applications

Q2 Health Professions
Philipp Zagar , Vishnu Ravi , Lauren Aalami , Stephan Krusche , Oliver Aalami , Paul Schmiedmayer
{"title":"Dynamic fog computing for enhanced LLM execution in medical applications","authors":"Philipp Zagar ,&nbsp;Vishnu Ravi ,&nbsp;Lauren Aalami ,&nbsp;Stephan Krusche ,&nbsp;Oliver Aalami ,&nbsp;Paul Schmiedmayer","doi":"10.1016/j.smhl.2025.100577","DOIUrl":null,"url":null,"abstract":"<div><div>The ability of large language models (LLMs) to process, interpret, and comprehend vast amounts of heterogeneous data presents a significant opportunity to enhance data-driven care delivery. However, the sensitive nature of protected health information (PHI) raises concerns about data privacy and trust in remote LLM platforms. Additionally, the cost of cloud-based artificial intelligence (AI) services remains a barrier to widespread adoption. To address these challenges, we propose shifting the LLM execution environment from centralized, opaque cloud providers to a decentralized and dynamic fog computing architecture. By running open-weight LLMs in more trusted environments, such as a user’s edge device or a fog layer within a local network, we aim to mitigate the privacy, trust, and financial concerns associated with cloud-based LLMs. We introduce <em>SpeziLLM</em>, an open-source framework designed to streamline LLM execution across multiple layers, facilitating seamless integration into digital health applications. To demonstrate its versatility, we showcase <em>SpeziLLM</em> across six digital health applications, highlighting its broad applicability in various healthcare settings.</div></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"36 ","pages":"Article 100577"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648325000388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

The ability of large language models (LLMs) to process, interpret, and comprehend vast amounts of heterogeneous data presents a significant opportunity to enhance data-driven care delivery. However, the sensitive nature of protected health information (PHI) raises concerns about data privacy and trust in remote LLM platforms. Additionally, the cost of cloud-based artificial intelligence (AI) services remains a barrier to widespread adoption. To address these challenges, we propose shifting the LLM execution environment from centralized, opaque cloud providers to a decentralized and dynamic fog computing architecture. By running open-weight LLMs in more trusted environments, such as a user’s edge device or a fog layer within a local network, we aim to mitigate the privacy, trust, and financial concerns associated with cloud-based LLMs. We introduce SpeziLLM, an open-source framework designed to streamline LLM execution across multiple layers, facilitating seamless integration into digital health applications. To demonstrate its versatility, we showcase SpeziLLM across six digital health applications, highlighting its broad applicability in various healthcare settings.

Abstract Image

在医疗应用中增强LLM执行的动态雾计算
大型语言模型(llm)处理、解释和理解大量异构数据的能力为增强数据驱动的医疗服务提供了重要机会。然而,受保护的健康信息(PHI)的敏感性引起了对远程LLM平台的数据隐私和信任的担忧。此外,基于云的人工智能(AI)服务的成本仍然是广泛采用的障碍。为了应对这些挑战,我们建议将LLM执行环境从集中的、不透明的云提供商转移到分散的、动态的雾计算架构。通过在更可信的环境中运行开放权重llm,例如用户的边缘设备或本地网络中的雾层,我们的目标是减轻与基于云的llm相关的隐私、信任和财务问题。我们推出了SpeziLLM,这是一个开源框架,旨在简化LLM跨多层的执行,促进无缝集成到数字健康应用程序中。为了展示其多功能性,我们在六个数字健康应用程序中展示了SpeziLLM,突出了其在各种医疗保健环境中的广泛适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信