Fractional lower-order covariance-based measures for cyclostationary time series with heavy-tailed distributions: Application to dependence testing and model order identification

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Wojciech Żuławiński, Agnieszka Wyłomańska
{"title":"Fractional lower-order covariance-based measures for cyclostationary time series with heavy-tailed distributions: Application to dependence testing and model order identification","authors":"Wojciech Żuławiński,&nbsp;Agnieszka Wyłomańska","doi":"10.1016/j.dsp.2025.105214","DOIUrl":null,"url":null,"abstract":"<div><div>This article introduces new methods for the analysis of cyclostationary time series with infinite variance. Traditional cyclostationary analysis, based on periodically correlated (PC) processes, relies on the autocovariance function (ACVF). However, the ACVF is not suitable for data exhibiting a heavy-tailed distribution, particularly with infinite variance. Thus, we propose a novel framework for the analysis of cyclostationary time series with heavy-tailed distribution, utilizing the fractional lower-order covariance (FLOC) as an alternative to covariance. This leads to the introduction of two new autodependence measures: the periodic fractional lower-order autocorrelation function (peFLOACF) and the periodic fractional lower-order partial autocorrelation function (peFLOPACF). These measures generalize the classical periodic autocorrelation function (peACF) and periodic partial autocorrelation function (pePACF), offering robust tools for analyzing infinite-variance processes. Two practical applications of the proposed measures are explored: a portmanteau test for testing dependence in cyclostationary series and a method for order identification in periodic autoregressive (PAR) and periodic moving average (PMA) models with infinite variance. Both applications demonstrate the potential of new tools, with simulations validating their efficiency. The methodology is further illustrated through the analysis of real-world air pollution data, which showcases its practical utility. The results indicate that the proposed measures based on FLOC provide reliable and efficient techniques for analyzing cyclostationary processes with heavy-tailed distributions.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"163 ","pages":"Article 105214"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200425002362","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces new methods for the analysis of cyclostationary time series with infinite variance. Traditional cyclostationary analysis, based on periodically correlated (PC) processes, relies on the autocovariance function (ACVF). However, the ACVF is not suitable for data exhibiting a heavy-tailed distribution, particularly with infinite variance. Thus, we propose a novel framework for the analysis of cyclostationary time series with heavy-tailed distribution, utilizing the fractional lower-order covariance (FLOC) as an alternative to covariance. This leads to the introduction of two new autodependence measures: the periodic fractional lower-order autocorrelation function (peFLOACF) and the periodic fractional lower-order partial autocorrelation function (peFLOPACF). These measures generalize the classical periodic autocorrelation function (peACF) and periodic partial autocorrelation function (pePACF), offering robust tools for analyzing infinite-variance processes. Two practical applications of the proposed measures are explored: a portmanteau test for testing dependence in cyclostationary series and a method for order identification in periodic autoregressive (PAR) and periodic moving average (PMA) models with infinite variance. Both applications demonstrate the potential of new tools, with simulations validating their efficiency. The methodology is further illustrated through the analysis of real-world air pollution data, which showcases its practical utility. The results indicate that the proposed measures based on FLOC provide reliable and efficient techniques for analyzing cyclostationary processes with heavy-tailed distributions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信