Radiomics in early detection of bilio-pancreatic lesions: A narrative review

IF 3.2 3区 医学 Q2 GASTROENTEROLOGY & HEPATOLOGY
Calogero Casà , Daniel Portik , Ahmed Nadeem Abbasi , Francesco Miccichè
{"title":"Radiomics in early detection of bilio-pancreatic lesions: A narrative review","authors":"Calogero Casà ,&nbsp;Daniel Portik ,&nbsp;Ahmed Nadeem Abbasi ,&nbsp;Francesco Miccichè","doi":"10.1016/j.bpg.2025.101997","DOIUrl":null,"url":null,"abstract":"<div><div>Radiomics is transforming the field of early detection of bilio-pancreatic lesions, offering significant advancements in diagnostic accuracy and personalized treatment planning. By extracting high-dimensional data from medical images such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), radiomics reveals complex patterns that remain undetectable through traditional imaging evaluation. This review synthesizes recent developments in radiomics, particularly its application to early detection of pancreatic cancer (PC) and biliary duct cancer (BDC). It highlights the role of machine learning algorithms and multi-parametric models in improving diagnostic performance and discusses challenges such as standardization, reproducibility, and the need for larger, multicenter datasets. The integration of radiomics with genomic data and liquid biopsies also presents future opportunities for more individualized patient care.</div></div>","PeriodicalId":56031,"journal":{"name":"Best Practice & Research Clinical Gastroenterology","volume":"74 ","pages":"Article 101997"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Best Practice & Research Clinical Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1521691825000241","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Radiomics is transforming the field of early detection of bilio-pancreatic lesions, offering significant advancements in diagnostic accuracy and personalized treatment planning. By extracting high-dimensional data from medical images such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), radiomics reveals complex patterns that remain undetectable through traditional imaging evaluation. This review synthesizes recent developments in radiomics, particularly its application to early detection of pancreatic cancer (PC) and biliary duct cancer (BDC). It highlights the role of machine learning algorithms and multi-parametric models in improving diagnostic performance and discusses challenges such as standardization, reproducibility, and the need for larger, multicenter datasets. The integration of radiomics with genomic data and liquid biopsies also presents future opportunities for more individualized patient care.
放射组学在胆道-胰腺病变早期检测中的应用综述
放射组学正在改变胆道胰腺病变的早期检测领域,在诊断准确性和个性化治疗计划方面取得了重大进展。通过从计算机断层扫描(CT)、磁共振成像(MRI)和正电子发射断层扫描(PET)等医学图像中提取高维数据,放射组学揭示了传统成像评估无法检测到的复杂模式。本文综述了放射组学的最新进展,特别是其在胰腺癌(PC)和胆管癌(BDC)早期检测中的应用。它强调了机器学习算法和多参数模型在提高诊断性能方面的作用,并讨论了标准化、可重复性以及对更大、多中心数据集的需求等挑战。放射组学与基因组数据和液体活检的整合也为未来更加个性化的患者护理提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
69 days
期刊介绍: Each topic-based issue of Best Practice & Research Clinical Gastroenterology will provide a comprehensive review of current clinical practice and thinking within the specialty of gastroenterology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信