Integrating artificial intelligence with endoscopic ultrasound in the early detection of bilio-pancreatic lesions: Current advances and future prospects

IF 3.2 3区 医学 Q2 GASTROENTEROLOGY & HEPATOLOGY
Matteo Tacelli , Gaetano Lauri , Daniela Tabacelia , Cristian George Tieranu , Paolo Giorgio Arcidiacono , Adrian Săftoiu
{"title":"Integrating artificial intelligence with endoscopic ultrasound in the early detection of bilio-pancreatic lesions: Current advances and future prospects","authors":"Matteo Tacelli ,&nbsp;Gaetano Lauri ,&nbsp;Daniela Tabacelia ,&nbsp;Cristian George Tieranu ,&nbsp;Paolo Giorgio Arcidiacono ,&nbsp;Adrian Săftoiu","doi":"10.1016/j.bpg.2025.101975","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of Artificial Intelligence (AI) in endoscopic ultrasound (EUS) represents a transformative advancement in the early detection and management of biliopancreatic lesions. This review highlights the current state of AI-enhanced EUS (AI-EUS) for diagnosing solid and cystic pancreatic lesions, as well as biliary diseases. AI-driven models, including machine learning (ML) and deep learning (DL), have shown significant improvements in diagnostic accuracy, particularly in distinguishing pancreatic ductal adenocarcinoma (PDAC) from benign conditions and in the characterization of pancreatic cystic neoplasms. Advanced algorithms, such as convolutional neural networks (CNNs), enable precise image analysis, real-time lesion classification, and integration with clinical and genomic data for personalized care.</div><div>In biliary diseases, AI-assisted systems enhance bile duct visualization and streamline diagnostic workflows, minimizing operator dependency. Emerging applications, such as AI-guided EUS fine-needle aspiration (FNA) and biopsy (FNB), improve diagnostic yields while reducing errors. Despite these advancements, challenges remain, including data standardization, model interpretability, and ethical concerns regarding data privacy. Future developments aim to integrate multimodal imaging, real-time procedural support, and predictive analytics to further refine the diagnostic and therapeutic potential of AI-EUS.</div><div>AI-driven innovation in EUS stands poised to revolutionize pancreatico-biliary diagnostics, facilitating earlier detection, enhancing precision, and paving the way for personalized medicine in gastrointestinal oncology and beyond.</div></div>","PeriodicalId":56031,"journal":{"name":"Best Practice & Research Clinical Gastroenterology","volume":"74 ","pages":"Article 101975"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Best Practice & Research Clinical Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1521691825000022","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of Artificial Intelligence (AI) in endoscopic ultrasound (EUS) represents a transformative advancement in the early detection and management of biliopancreatic lesions. This review highlights the current state of AI-enhanced EUS (AI-EUS) for diagnosing solid and cystic pancreatic lesions, as well as biliary diseases. AI-driven models, including machine learning (ML) and deep learning (DL), have shown significant improvements in diagnostic accuracy, particularly in distinguishing pancreatic ductal adenocarcinoma (PDAC) from benign conditions and in the characterization of pancreatic cystic neoplasms. Advanced algorithms, such as convolutional neural networks (CNNs), enable precise image analysis, real-time lesion classification, and integration with clinical and genomic data for personalized care.
In biliary diseases, AI-assisted systems enhance bile duct visualization and streamline diagnostic workflows, minimizing operator dependency. Emerging applications, such as AI-guided EUS fine-needle aspiration (FNA) and biopsy (FNB), improve diagnostic yields while reducing errors. Despite these advancements, challenges remain, including data standardization, model interpretability, and ethical concerns regarding data privacy. Future developments aim to integrate multimodal imaging, real-time procedural support, and predictive analytics to further refine the diagnostic and therapeutic potential of AI-EUS.
AI-driven innovation in EUS stands poised to revolutionize pancreatico-biliary diagnostics, facilitating earlier detection, enhancing precision, and paving the way for personalized medicine in gastrointestinal oncology and beyond.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
69 days
期刊介绍: Each topic-based issue of Best Practice & Research Clinical Gastroenterology will provide a comprehensive review of current clinical practice and thinking within the specialty of gastroenterology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信