{"title":"A flexible mixed-membership model for community and enterotype detection for microbiome data","authors":"Alice Giampino, Roberto Ascari, Sonia Migliorati","doi":"10.1016/j.csda.2025.108181","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding how the human gut microbiome affects host health is challenging due to the wide interindividual variability, sparsity, and high dimensionality of microbiome data. Mixed-membership models have been previously applied to these data to detect latent communities of bacterial taxa that are expected to co-occur. The most widely used mixed-membership model is latent Dirichlet allocation (LDA). However, LDA is limited by the rigidity of the Dirichlet distribution imposed on the community proportions, which hinders its ability to model dependencies and account for overdispersion. To address this limitation, a generalization of LDA is proposed that introduces greater flexibility into the covariance matrix by incorporating the flexible Dirichlet (FD), a specific identifiable mixture with Dirichlet components. In addition to identifying communities, the new model enables the detection of enterotypes, i.e., clusters of samples with similar microbe composition. For inferential purposes, a computationally efficient collapsed Gibbs sampler that exploits the conjugacy of the FD distribution with respect to the multinomial model is proposed. A simulation study demonstrates the model's ability to accurately recover true parameter values by minimizing appropriate compositional discrepancy measures between the true and estimated values. Additionally, the model correctly identifies the number of communities, as evidenced by perplexity scores. Moreover, an application to the COMBO dataset highlights its effectiveness in detecting biologically significant and coherent communities and enterotypes, revealing a broader range of correlations between community abundances. These results underscore the new model as a definite improvement over LDA.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"210 ","pages":"Article 108181"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016794732500057X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding how the human gut microbiome affects host health is challenging due to the wide interindividual variability, sparsity, and high dimensionality of microbiome data. Mixed-membership models have been previously applied to these data to detect latent communities of bacterial taxa that are expected to co-occur. The most widely used mixed-membership model is latent Dirichlet allocation (LDA). However, LDA is limited by the rigidity of the Dirichlet distribution imposed on the community proportions, which hinders its ability to model dependencies and account for overdispersion. To address this limitation, a generalization of LDA is proposed that introduces greater flexibility into the covariance matrix by incorporating the flexible Dirichlet (FD), a specific identifiable mixture with Dirichlet components. In addition to identifying communities, the new model enables the detection of enterotypes, i.e., clusters of samples with similar microbe composition. For inferential purposes, a computationally efficient collapsed Gibbs sampler that exploits the conjugacy of the FD distribution with respect to the multinomial model is proposed. A simulation study demonstrates the model's ability to accurately recover true parameter values by minimizing appropriate compositional discrepancy measures between the true and estimated values. Additionally, the model correctly identifies the number of communities, as evidenced by perplexity scores. Moreover, an application to the COMBO dataset highlights its effectiveness in detecting biologically significant and coherent communities and enterotypes, revealing a broader range of correlations between community abundances. These results underscore the new model as a definite improvement over LDA.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]