{"title":"Thermo-economic-environmental analysis and performance-based Pareto optimization of a floating nuclear power plant","authors":"Masoud Nasouri , Navid Delgarm","doi":"10.1016/j.nucengdes.2025.114013","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a comprehensive thermo-economic-environmental analysis and performance-based Pareto optimization of a Floating Small Modular Reactor Power Plant (F-SMRP) along the Bushehr coast (Iran), designed to meet regional electricity demands. Innovative ideas are employed to predict the thermodynamic properties of the F-SMRP using an artificial neural network. Upon model verification, a detailed 4E (energy, exergy, exergoeconomic, and environmental economics) analysis is conducted. Further, performance optimization is carried out targeting key metrics such as exergy efficiency (<span><math><msub><mi>η</mi><mrow><mi>II</mi></mrow></msub></math></span>), the total capital cost rate (<span><math><msubsup><mover><mi>C</mi><mo>̇</mo></mover><mrow><mi>tot</mi></mrow><mrow><mi>I</mi><mo>&</mo><mi>O</mi><mo>&</mo><mi>M</mi></mrow></msubsup></math></span>), and the total product exergy cost rate (<span><math><msub><mover><mi>C</mi><mo>̇</mo></mover><mi>P</mi></msub></math></span>) using the artificial bee colony algorithm. The final optimal configuration, referred to as the Optimized F-SMRP (OF-SMRP), is determined through the analytic hierarchy process decision-making. The results demonstrate that F-SMRP achieves <span><math><msub><mi>η</mi><mrow><mi>I</mi><mo>,</mo><mi>F</mi><mo>-</mo><mi>S</mi><mi>M</mi><mi>R</mi><mi>P</mi></mrow></msub></math></span> and <span><math><msub><mi>η</mi><mrow><mi>II</mi><mo>,</mo><mi>F</mi><mo>-</mo><mi>S</mi><mi>M</mi><mi>R</mi><mi>P</mi></mrow></msub></math></span> of 29.9 % and 64.12 %, respectively, with corresponding <span><math><msubsup><mover><mi>C</mi><mo>̇</mo></mover><mrow><mi>tot</mi><mo>,</mo><mi>F</mi><mo>-</mo><mi>S</mi><mi>M</mi><mi>R</mi><mi>P</mi></mrow><mrow><mi>I</mi><mo>&</mo><mi>O</mi><mo>&</mo><mi>M</mi></mrow></msubsup></math></span> and <span><math><msub><mover><mi>C</mi><mo>̇</mo></mover><mrow><mi>P</mi><mo>,</mo><mi>F</mi><mo>-</mo><mi>S</mi><mi>M</mi><mi>R</mi><mi>P</mi></mrow></msub></math></span> of $331.8/hour and $6191.8/hour. In contrast, OF-SMRP exhibits notable improvements across all metrics compared to the F-SMRP. The <span><math><msub><mi>η</mi><mrow><mi>I</mi><mo>,</mo><mi>O</mi><mi>F</mi><mo>-</mo><mi>S</mi><mi>M</mi><mi>R</mi><mi>P</mi></mrow></msub></math></span> reaches 33.2 %, showing a significant increase of 11 %. Also, <span><math><msub><mover><mi>W</mi><mo>̇</mo></mover><mi>e</mi></msub></math></span> is 34.81 MW, showcasing an increase of 2.11 MW. Similarly, the <span><math><msub><mi>η</mi><mrow><mi>II</mi><mo>,</mo><mi>O</mi><mi>F</mi><mo>-</mo><mi>S</mi><mi>M</mi><mi>R</mi><mi>P</mi></mrow></msub></math></span> improves to 68.1 %, representing a 3.97 % gain. Despite a moderate rise in <span><math><msubsup><mover><mi>C</mi><mo>̇</mo></mover><mrow><mi>tot</mi><mo>,</mo><mspace></mspace><mi>O</mi><mi>F</mi><mo>-</mo><mi>S</mi><mi>M</mi><mi>R</mi><mi>P</mi></mrow><mrow><mi>I</mi><mo>&</mo><mi>O</mi><mo>&</mo><mi>M</mi></mrow></msubsup></math></span> to $352.88/hour (an increase of $21/hour), the <span><math><msub><mover><mi>C</mi><mo>̇</mo></mover><mrow><mi>P</mi><mo>,</mo><mi>O</mi><mi>F</mi><mo>-</mo><mi>S</mi><mi>M</mi><mi>R</mi><mi>P</mi></mrow></msub></math></span> significantly decreases to $6656.9/hour, representing a reduction of $465.1/hour. Environmental analysis reveals that F-SMRP saves 85.27 million cubic meters of natural gas annually (valued at $8.57 million) and reduces emissions of 166 kilotons of greenhouse gases, leading to external cost savings of $37.88 million and $8 million in carbon tax savings annually.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"438 ","pages":"Article 114013"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549325001906","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a comprehensive thermo-economic-environmental analysis and performance-based Pareto optimization of a Floating Small Modular Reactor Power Plant (F-SMRP) along the Bushehr coast (Iran), designed to meet regional electricity demands. Innovative ideas are employed to predict the thermodynamic properties of the F-SMRP using an artificial neural network. Upon model verification, a detailed 4E (energy, exergy, exergoeconomic, and environmental economics) analysis is conducted. Further, performance optimization is carried out targeting key metrics such as exergy efficiency (), the total capital cost rate (), and the total product exergy cost rate () using the artificial bee colony algorithm. The final optimal configuration, referred to as the Optimized F-SMRP (OF-SMRP), is determined through the analytic hierarchy process decision-making. The results demonstrate that F-SMRP achieves and of 29.9 % and 64.12 %, respectively, with corresponding and of $331.8/hour and $6191.8/hour. In contrast, OF-SMRP exhibits notable improvements across all metrics compared to the F-SMRP. The reaches 33.2 %, showing a significant increase of 11 %. Also, is 34.81 MW, showcasing an increase of 2.11 MW. Similarly, the improves to 68.1 %, representing a 3.97 % gain. Despite a moderate rise in to $352.88/hour (an increase of $21/hour), the significantly decreases to $6656.9/hour, representing a reduction of $465.1/hour. Environmental analysis reveals that F-SMRP saves 85.27 million cubic meters of natural gas annually (valued at $8.57 million) and reduces emissions of 166 kilotons of greenhouse gases, leading to external cost savings of $37.88 million and $8 million in carbon tax savings annually.
本文介绍了伊朗布什尔沿海一座浮动小型模块化反应堆电厂(F-SMRP)的综合热经济环境分析和基于性能的帕累托优化,该电厂旨在满足地区电力需求。利用人工神经网络对F-SMRP的热力学性质进行了预测。在模型验证后,进行了详细的4E(能源、用能、燃烧经济和环境经济)分析。进一步,利用人工蜂群算法,针对能源效率ηII、总资金成本率(ĊtotI&O&;M)、总产品能源成本率(ĊP)等关键指标进行性能优化。通过层次分析法决策确定最终的最优构型,称为优化F-SMRP (OF-SMRP)。结果表明:F-SMRP达到ηI、η F-SMRP和ηII,F-SMRP分别为29.9%和64.12%,相应的Ċtot, f - smrpi&&&;M和ĊP,F-SMRP分别为$331.8/h和$6191.8/h。相比之下,与F-SMRP相比,OF-SMRP在所有指标上都有显着改善。ηI, of - smrp达到33.2%,显著提高了11%。Ẇe为34.81兆瓦,增加了2.11兆瓦。同样,ηII,OF-SMRP提高到68.1%,代表3.97%的增益。尽管Ċtot, of - smrpi &O&;M适度上涨至352.88美元/小时(增加了21美元/小时),ĊP, of - smrp大幅下降至6656.9美元/小时,减少了465.1美元/小时。环境分析显示,F-SMRP每年节省8527万立方米天然气(价值857万美元),减少166千吨温室气体排放,每年节省外部成本3788万美元,节省碳税800万美元。
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.