Clinical implementation of patient-specific quality assurance for synthetic computed tomography

IF 3.4 Q2 ONCOLOGY
Francesca Nella , Stephanie Tanadini-Lang, Riccardo Dal Bello
{"title":"Clinical implementation of patient-specific quality assurance for synthetic computed tomography","authors":"Francesca Nella ,&nbsp;Stephanie Tanadini-Lang,&nbsp;Riccardo Dal Bello","doi":"10.1016/j.phro.2025.100764","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>In a magnetic resonance (MR) only planning workflow, MR image is the sole dataset acquired. In order to calculate the dose deposition, a synthetic CT (sCT) is generated to substitute the planning computed tomography (CT). This study aimed to establish acceptance criteria for the clinical implementation of patient-specific quality assurance (PSQA) for sCT.</div></div><div><h3>Materials and methods</h3><div>A retrospective study was conducted on 60. 30 patients underwent a CT scan in treatment position and an MR in diagnostic position. 30 patients had both CT and MR images acquired in treatment position. For the latter group, a sCT for dose calculation was generated and compared against three PSQA methods: recalculation on (A) water override of the body, (B) tissue classes with bulk density overrides and (C) planning CT. The relative dose differences (ΔD [%]) between the sCT and the PSQA methos were evaluated.</div></div><div><h3>Results</h3><div>ΔD for PTV Dmean for method (A) were within 3% for pelvis and 4% for brain cohorts, with standard deviations below 1%. Methods (B) and (C) remained within 2% and 1%, respectively, with deviations up to 1%.</div></div><div><h3>Conclusion</h3><div>The present study proposes a robust PSQA method for MR-only planning. Method (A) is a valuable tool for identifying potential large outliers for Dmean deviations (&gt; 5 %) and it is proposed as the routine PSQA. Method (B) can be used for pelvis cases to improve detection to the 2 % level if method (A) fails. If both (A) and (B) fail, method (C) can be used as a fall-back.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"34 ","pages":"Article 100764"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose

In a magnetic resonance (MR) only planning workflow, MR image is the sole dataset acquired. In order to calculate the dose deposition, a synthetic CT (sCT) is generated to substitute the planning computed tomography (CT). This study aimed to establish acceptance criteria for the clinical implementation of patient-specific quality assurance (PSQA) for sCT.

Materials and methods

A retrospective study was conducted on 60. 30 patients underwent a CT scan in treatment position and an MR in diagnostic position. 30 patients had both CT and MR images acquired in treatment position. For the latter group, a sCT for dose calculation was generated and compared against three PSQA methods: recalculation on (A) water override of the body, (B) tissue classes with bulk density overrides and (C) planning CT. The relative dose differences (ΔD [%]) between the sCT and the PSQA methos were evaluated.

Results

ΔD for PTV Dmean for method (A) were within 3% for pelvis and 4% for brain cohorts, with standard deviations below 1%. Methods (B) and (C) remained within 2% and 1%, respectively, with deviations up to 1%.

Conclusion

The present study proposes a robust PSQA method for MR-only planning. Method (A) is a valuable tool for identifying potential large outliers for Dmean deviations (> 5 %) and it is proposed as the routine PSQA. Method (B) can be used for pelvis cases to improve detection to the 2 % level if method (A) fails. If both (A) and (B) fail, method (C) can be used as a fall-back.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信