Geert De Kerf , Ana Barragán-Montero , Charlotte L. Brouwer , Pietro Pisciotta , Marie-Claude Biston , Marco Fusella , Geoffroy Herbin , Esther Kneepkens , Livia Marrazzo , Joshua Mason , Camila Panduro Nielsen , Koen Snijders , Stephanie Tanadini-Lang , Aude Vaandering , Tomas M. Janssen
{"title":"Multicentre prospective risk analysis of a fully automated radiotherapy workflow","authors":"Geert De Kerf , Ana Barragán-Montero , Charlotte L. Brouwer , Pietro Pisciotta , Marie-Claude Biston , Marco Fusella , Geoffroy Herbin , Esther Kneepkens , Livia Marrazzo , Joshua Mason , Camila Panduro Nielsen , Koen Snijders , Stephanie Tanadini-Lang , Aude Vaandering , Tomas M. Janssen","doi":"10.1016/j.phro.2025.100765","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Purpose</h3><div>Fully automated workflows (FAWs) for radiotherapy treatment preparation are feasible, but remain underutilized in clinical settings. A multicentre prospective risk analysis was conducted to support centres in managing FAW-related risks and to identify workflow steps needing improvement.</div></div><div><h3>Material and Methods</h3><div>Eight European radiotherapy centres performed a failure mode and effect analysis (FMEA) on a hypothetical FAW, with a manual review step at the end. Centres assessed occurrence, severity and detectability of provided, or newly added, failure modes to obtain a risk score. Quantitative analysis was performed on curated data, while qualitative analysis summarized free text comments.</div></div><div><h3>Results</h3><div>Manual review and auto-segmentation were identified as the highest-risk steps and the highest scoring failure modes were associated with inadequate manual review (high detectability and severity score), incorrect (i.e. outside of intended use) application of the FAW (high severity score) and protocol violations during patient preparation (high occurrence score). The qualitative analysis highlighted amongst others the risk of deviation from protocol and the difficulty for manual review to recognize automation errors. The risk associated with the technical parts of the workflow was considered low.</div></div><div><h3>Conclusions</h3><div>The FMEA analysis highlighted that points where people interact with the FAW were considered higher risk than lack of trust in the FAW itself. Major concerns were the ability of people to correctly judge output in case of low generalizability and increasing skill degradation. Consequently, educational programs and interpretative tools are essential prerequisites for widespread clinical application of FAWs.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"34 ","pages":"Article 100765"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Purpose
Fully automated workflows (FAWs) for radiotherapy treatment preparation are feasible, but remain underutilized in clinical settings. A multicentre prospective risk analysis was conducted to support centres in managing FAW-related risks and to identify workflow steps needing improvement.
Material and Methods
Eight European radiotherapy centres performed a failure mode and effect analysis (FMEA) on a hypothetical FAW, with a manual review step at the end. Centres assessed occurrence, severity and detectability of provided, or newly added, failure modes to obtain a risk score. Quantitative analysis was performed on curated data, while qualitative analysis summarized free text comments.
Results
Manual review and auto-segmentation were identified as the highest-risk steps and the highest scoring failure modes were associated with inadequate manual review (high detectability and severity score), incorrect (i.e. outside of intended use) application of the FAW (high severity score) and protocol violations during patient preparation (high occurrence score). The qualitative analysis highlighted amongst others the risk of deviation from protocol and the difficulty for manual review to recognize automation errors. The risk associated with the technical parts of the workflow was considered low.
Conclusions
The FMEA analysis highlighted that points where people interact with the FAW were considered higher risk than lack of trust in the FAW itself. Major concerns were the ability of people to correctly judge output in case of low generalizability and increasing skill degradation. Consequently, educational programs and interpretative tools are essential prerequisites for widespread clinical application of FAWs.