{"title":"Human pluripotent stem cell-derived intestinal organoids for pharmacokinetic studies","authors":"Takumi Saito , Junichiro Amako , Teruhiko Watanabe , Nobuaki Shiraki , Shoen Kume","doi":"10.1016/j.ejcb.2025.151489","DOIUrl":null,"url":null,"abstract":"<div><div>The human small intestine is essential for orally administered drugs' absorption, metabolism, and excretion. Human induced pluripotent stem cell (hiPSC)-derived intestinal epithelial cells (IECs) offer a useful model for evaluating drug candidate compounds. We previously reported a protocol to generate matured enterocyte-like cells that exhibit P-gp-mediated efflux and cytochrome P450 3A (CYP3A)-mediated metabolism from human iPSCs. However, under the current protocols, generating iPSC-derived intestinal enterocyte-like cells requires a multi-step differentiation procedure and is time-consuming. Recent progress in intestinal organoid (IO) study provides an understanding of the growth factors that enable the maintenance of adult stem cells. Here, we established an easily accessible protocol using a direct 3D cluster culture to derive IOs from hiPSCs (iPSC-IOs) with high self-proliferative ability. The hiPSC-IOs can be propagated for a long-term and maintained capacity to differentiate and can be cryopreserved. Upon seeding on a two-dimensional monolayer, hiPSC-IOs gave rise to the intestinal epithelial cells (IECs) containing mature cell types of the intestine. The hiPSC-IOs-derived IECs contain enterocytes that show CYP metabolizing enzyme and transporter activities and can be used for pharmacokinetic studies.</div></div>","PeriodicalId":12010,"journal":{"name":"European journal of cell biology","volume":"104 2","pages":"Article 151489"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of cell biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0171933525000147","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The human small intestine is essential for orally administered drugs' absorption, metabolism, and excretion. Human induced pluripotent stem cell (hiPSC)-derived intestinal epithelial cells (IECs) offer a useful model for evaluating drug candidate compounds. We previously reported a protocol to generate matured enterocyte-like cells that exhibit P-gp-mediated efflux and cytochrome P450 3A (CYP3A)-mediated metabolism from human iPSCs. However, under the current protocols, generating iPSC-derived intestinal enterocyte-like cells requires a multi-step differentiation procedure and is time-consuming. Recent progress in intestinal organoid (IO) study provides an understanding of the growth factors that enable the maintenance of adult stem cells. Here, we established an easily accessible protocol using a direct 3D cluster culture to derive IOs from hiPSCs (iPSC-IOs) with high self-proliferative ability. The hiPSC-IOs can be propagated for a long-term and maintained capacity to differentiate and can be cryopreserved. Upon seeding on a two-dimensional monolayer, hiPSC-IOs gave rise to the intestinal epithelial cells (IECs) containing mature cell types of the intestine. The hiPSC-IOs-derived IECs contain enterocytes that show CYP metabolizing enzyme and transporter activities and can be used for pharmacokinetic studies.
期刊介绍:
The European Journal of Cell Biology, a journal of experimental cell investigation, publishes reviews, original articles and short communications on the structure, function and macromolecular organization of cells and cell components. Contributions focusing on cellular dynamics, motility and differentiation, particularly if related to cellular biochemistry, molecular biology, immunology, neurobiology, and developmental biology are encouraged. Manuscripts describing significant technical advances are also welcome. In addition, papers dealing with biomedical issues of general interest to cell biologists will be published. Contributions addressing cell biological problems in prokaryotes and plants are also welcome.