A methodological systematic review of validation and performance of sepsis real-time prediction models

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Zichen Wang, Wen Wang, Che Sun, Jili Li, Shuangyi Xie, Jiayue Xu, Kang Zou, Yinghui Jin, Siyu Yan, Xuelian Liao, Yan Kang, Craig M. Coopersmith, Xin Sun
{"title":"A methodological systematic review of validation and performance of sepsis real-time prediction models","authors":"Zichen Wang, Wen Wang, Che Sun, Jili Li, Shuangyi Xie, Jiayue Xu, Kang Zou, Yinghui Jin, Siyu Yan, Xuelian Liao, Yan Kang, Craig M. Coopersmith, Xin Sun","doi":"10.1038/s41746-025-01587-1","DOIUrl":null,"url":null,"abstract":"<p>Sepsis real-time prediction models (SRPMs) provide timely alerts and may improve patient outcomes but face limited clinical adoption due to inconsistent validation methods and potential biases. Comprehensive evaluation, including external full-window validation with model- and outcome-level metrics, is crucial for real-world effectiveness, yet performance evidence remains scarce. This study systematically reviewed SRPM performance across validation methods, analyzing 91 studies from multiple databases. Only 54.9% applied full-window validation with both metric types. Performance decreased under external and full-window validation, with median AUROCs of 0.886 and 0.861 at 6- and 12-hours pre-onset, dropping to 0.783 in full-window external validation. Median Utility Scores declined from 0.381 in internal to -0.164 in external validation. Combining AUROC and Utility Score identified top-performing SRPMs in 18.7% of studies. Hand-crafted features significantly improved performance. Future research should focus on multi-center datasets, hand-crafted features, multi-metric full-window validation, and prospective trials to support clinical implementation.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"4 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01587-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Sepsis real-time prediction models (SRPMs) provide timely alerts and may improve patient outcomes but face limited clinical adoption due to inconsistent validation methods and potential biases. Comprehensive evaluation, including external full-window validation with model- and outcome-level metrics, is crucial for real-world effectiveness, yet performance evidence remains scarce. This study systematically reviewed SRPM performance across validation methods, analyzing 91 studies from multiple databases. Only 54.9% applied full-window validation with both metric types. Performance decreased under external and full-window validation, with median AUROCs of 0.886 and 0.861 at 6- and 12-hours pre-onset, dropping to 0.783 in full-window external validation. Median Utility Scores declined from 0.381 in internal to -0.164 in external validation. Combining AUROC and Utility Score identified top-performing SRPMs in 18.7% of studies. Hand-crafted features significantly improved performance. Future research should focus on multi-center datasets, hand-crafted features, multi-metric full-window validation, and prospective trials to support clinical implementation.

Abstract Image

对脓毒症实时预测模型的有效性和性能进行方法学系统回顾
脓毒症实时预测模型(srpm)提供及时警报并可能改善患者预后,但由于验证方法不一致和潜在偏差,临床应用有限。综合评估,包括模型和结果水平指标的外部全窗口验证,对现实世界的有效性至关重要,但性能证据仍然很少。本研究系统地回顾了SRPM在验证方法中的表现,分析了来自多个数据库的91项研究。只有54.9%的人同时使用两种度量类型的全窗口验证。在外部和全窗验证下,性能下降,发病前6小时和12小时的中位auroc分别为0.886和0.861,在全窗外部验证时降至0.783。中位效用评分从内部验证的0.381下降到外部验证的-0.164。结合AUROC和效用评分,在18.7%的研究中确定了表现最佳的srpm。手工制作的功能显著提高了性能。未来的研究应侧重于多中心数据集、手工特征、多度量全窗口验证和前瞻性试验,以支持临床实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信