Zichen Wang, Wen Wang, Che Sun, Jili Li, Shuangyi Xie, Jiayue Xu, Kang Zou, Yinghui Jin, Siyu Yan, Xuelian Liao, Yan Kang, Craig M. Coopersmith, Xin Sun
{"title":"A methodological systematic review of validation and performance of sepsis real-time prediction models","authors":"Zichen Wang, Wen Wang, Che Sun, Jili Li, Shuangyi Xie, Jiayue Xu, Kang Zou, Yinghui Jin, Siyu Yan, Xuelian Liao, Yan Kang, Craig M. Coopersmith, Xin Sun","doi":"10.1038/s41746-025-01587-1","DOIUrl":null,"url":null,"abstract":"<p>Sepsis real-time prediction models (SRPMs) provide timely alerts and may improve patient outcomes but face limited clinical adoption due to inconsistent validation methods and potential biases. Comprehensive evaluation, including external full-window validation with model- and outcome-level metrics, is crucial for real-world effectiveness, yet performance evidence remains scarce. This study systematically reviewed SRPM performance across validation methods, analyzing 91 studies from multiple databases. Only 54.9% applied full-window validation with both metric types. Performance decreased under external and full-window validation, with median AUROCs of 0.886 and 0.861 at 6- and 12-hours pre-onset, dropping to 0.783 in full-window external validation. Median Utility Scores declined from 0.381 in internal to -0.164 in external validation. Combining AUROC and Utility Score identified top-performing SRPMs in 18.7% of studies. Hand-crafted features significantly improved performance. Future research should focus on multi-center datasets, hand-crafted features, multi-metric full-window validation, and prospective trials to support clinical implementation.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"4 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01587-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Sepsis real-time prediction models (SRPMs) provide timely alerts and may improve patient outcomes but face limited clinical adoption due to inconsistent validation methods and potential biases. Comprehensive evaluation, including external full-window validation with model- and outcome-level metrics, is crucial for real-world effectiveness, yet performance evidence remains scarce. This study systematically reviewed SRPM performance across validation methods, analyzing 91 studies from multiple databases. Only 54.9% applied full-window validation with both metric types. Performance decreased under external and full-window validation, with median AUROCs of 0.886 and 0.861 at 6- and 12-hours pre-onset, dropping to 0.783 in full-window external validation. Median Utility Scores declined from 0.381 in internal to -0.164 in external validation. Combining AUROC and Utility Score identified top-performing SRPMs in 18.7% of studies. Hand-crafted features significantly improved performance. Future research should focus on multi-center datasets, hand-crafted features, multi-metric full-window validation, and prospective trials to support clinical implementation.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.