MRI-based digital twins to improve treatment response of breast cancer by optimizing neoadjuvant chemotherapy regimens

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Chengyue Wu, Ernesto A. B. F. Lima, Casey E. Stowers, Zhan Xu, Clinton Yam, Jong Bum Son, Jingfei Ma, Gaiane M. Rauch, Thomas E. Yankeelov
{"title":"MRI-based digital twins to improve treatment response of breast cancer by optimizing neoadjuvant chemotherapy regimens","authors":"Chengyue Wu, Ernesto A. B. F. Lima, Casey E. Stowers, Zhan Xu, Clinton Yam, Jong Bum Son, Jingfei Ma, Gaiane M. Rauch, Thomas E. Yankeelov","doi":"10.1038/s41746-025-01579-1","DOIUrl":null,"url":null,"abstract":"<p>We developed a practical framework to construct digital twins for predicting and optimizing triple-negative breast cancer (TNBC) response to neoadjuvant chemotherapy (NAC). This study employed 105 TNBC patients from the ARTEMIS trial (NCT02276443, registered on 10/21/2014) who received Adriamycin/Cytoxan (A/C)-Taxol (T). Digital twins were established by calibrating a biology-based mathematical model to patient-specific MRI data, which accurately predicted pathological complete response (pCR) with an AUC of 0.82. We then used each patient’s twin to theoretically optimize outcome by identifying their optimal A/C-T schedule from 128 options. The patient-specifically optimized treatment yielded a significant improvement in pCR rate of 20.95–24.76%. Retrospective validation was conducted by virtually treating the twins with AC-T schedules from historical trials and obtaining identical observations on outcomes: bi-weekly A/C-T outperforms tri-weekly A/C-T, and weekly/bi-weekly T outperforms tri-weekly T. This proof-of-principle study demonstrates that our digital twin framework provides a practical methodology to identify patient-specific TNBC treatment schedules.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"53 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01579-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

We developed a practical framework to construct digital twins for predicting and optimizing triple-negative breast cancer (TNBC) response to neoadjuvant chemotherapy (NAC). This study employed 105 TNBC patients from the ARTEMIS trial (NCT02276443, registered on 10/21/2014) who received Adriamycin/Cytoxan (A/C)-Taxol (T). Digital twins were established by calibrating a biology-based mathematical model to patient-specific MRI data, which accurately predicted pathological complete response (pCR) with an AUC of 0.82. We then used each patient’s twin to theoretically optimize outcome by identifying their optimal A/C-T schedule from 128 options. The patient-specifically optimized treatment yielded a significant improvement in pCR rate of 20.95–24.76%. Retrospective validation was conducted by virtually treating the twins with AC-T schedules from historical trials and obtaining identical observations on outcomes: bi-weekly A/C-T outperforms tri-weekly A/C-T, and weekly/bi-weekly T outperforms tri-weekly T. This proof-of-principle study demonstrates that our digital twin framework provides a practical methodology to identify patient-specific TNBC treatment schedules.

Abstract Image

基于mri的数字双胞胎通过优化新辅助化疗方案来改善乳腺癌的治疗反应
我们开发了一个实用的框架来构建数字双胞胎,用于预测和优化三阴性乳腺癌(TNBC)对新辅助化疗(NAC)的反应。本研究采用了来自ARTEMIS试验(NCT02276443,注册于2014年10月21日)的105例TNBC患者,他们接受了阿霉素/环环霉素(A/C)-紫杉醇(T)治疗。通过将基于生物学的数学模型与患者特异性MRI数据校准,建立了数字双胞胎,该模型准确预测了病理完全缓解(pCR), AUC为0.82。然后,我们使用每个患者的双胞胎,从128个选项中确定他们的最佳A/C-T计划,从理论上优化结果。患者特异性优化治疗的pCR率显著提高,为20.95 ~ 24.76%。回顾性验证通过从历史试验中使用AC-T计划对双胞胎进行虚拟治疗,并获得相同的结果观察:双周A/C-T优于三周A/C-T,每周/双周T优于三周T。这一原理验证研究表明,我们的数字双胞胎框架提供了一种实用的方法来确定患者特异性TNBC治疗计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信