{"title":"Noise-tolerant public-key quantum money from a classical oracle","authors":"Peter Yuen","doi":"10.22331/q-2025-04-07-1691","DOIUrl":null,"url":null,"abstract":"Quantum money is the task of verifying the validity of banknotes while ensuring that they cannot be counterfeited. Public-key quantum money allows anyone to perform verification, while the private-key setting restricts the ability to verify to banks, as in Wiesner's original scheme. The current state of technological progress means that errors are impossible to entirely suppress, hence the requirement for noise-tolerant schemes. We show for the first time how to achieve noise-tolerance in the public-key setting. Our techniques follow Aaronson and Christiano's oracle model, where we use the ideas of quantum error correction to extend their scheme: a valid banknote is now a subspace state possibly affected by noise, and verification is performed by using classical oracles to check for membership in \"larger spaces.\" Additionally, a banknote in our scheme is minted by preparing conjugate coding states and applying a unitary that permutes the standard basis vectors.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"37 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-04-07-1691","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum money is the task of verifying the validity of banknotes while ensuring that they cannot be counterfeited. Public-key quantum money allows anyone to perform verification, while the private-key setting restricts the ability to verify to banks, as in Wiesner's original scheme. The current state of technological progress means that errors are impossible to entirely suppress, hence the requirement for noise-tolerant schemes. We show for the first time how to achieve noise-tolerance in the public-key setting. Our techniques follow Aaronson and Christiano's oracle model, where we use the ideas of quantum error correction to extend their scheme: a valid banknote is now a subspace state possibly affected by noise, and verification is performed by using classical oracles to check for membership in "larger spaces." Additionally, a banknote in our scheme is minted by preparing conjugate coding states and applying a unitary that permutes the standard basis vectors.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.