The neuroprotective γ-hydroxybutyrate analog 3-hydroxycyclopent-1-enecarboxylic acid does not directly affect CaMKIIα autophosphorylation at T286 or binding to GluN2B.

IF 3.2 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Carolyn Nicole Brown, Rachel E Blaine, Chase Madison Barker, Steven J Coultrap, Karl Ulrich Bayer
{"title":"The neuroprotective γ-hydroxybutyrate analog 3-hydroxycyclopent-1-enecarboxylic acid does not directly affect CaMKIIα autophosphorylation at T286 or binding to GluN2B.","authors":"Carolyn Nicole Brown, Rachel E Blaine, Chase Madison Barker, Steven J Coultrap, Karl Ulrich Bayer","doi":"10.1016/j.molpha.2025.100029","DOIUrl":null,"url":null,"abstract":"<p><p>The Ca<sup>2+</sup>/calmodulin (CaM)-dependent protein kinase II (CaMKII) mediates physiological long-term potentiation (LTP) of synaptic strength and pathological ischemic neuronal cell death. Both functions require CaMKII autophosphorylation at T286 (pT286) and binding to the NMDA-type glutamate receptor subunit GluN2B. The neuroprotection seen with 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) was thought to be mediated by impairing binding of the brain-specific CaMKIIα isozyme to GluN2B. However, we show that HOCPCA does not inhibit CaMKIIα enzymatic activity, pT286, cocondensation with GluN2B, or binding to GluN2B. Consistent with no effect on GluN2B binding in vitro or in HEK293 cells, HOCPCA also did not affect the CaMKIIα movement to excitatory synapses in hippocampal neurons in response to LTP stimuli. These findings leave the neuroprotective mechanism of HOCPCA unclear but explain why HOCPCA does not impair LTP. SIGNIFICANCE STATEMENT: This study found that the neuroprotective compound 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) does not directly interfere with Ca<sup>2+</sup>/calmodulin (CaM)-dependent protein kinase II (CaMKII) activity or GluN2B binding. Although this leaves the neuroprotective mechanism of HOCPCA unclear, it explains why HOCPCA does not impair long-term potentiation. Overall, this limits the use of HOCPCA as a tool compound to study CaMKII functions, but not its clinical potential.</p>","PeriodicalId":18767,"journal":{"name":"Molecular Pharmacology","volume":"107 4","pages":"100029"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molpha.2025.100029","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) mediates physiological long-term potentiation (LTP) of synaptic strength and pathological ischemic neuronal cell death. Both functions require CaMKII autophosphorylation at T286 (pT286) and binding to the NMDA-type glutamate receptor subunit GluN2B. The neuroprotection seen with 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) was thought to be mediated by impairing binding of the brain-specific CaMKIIα isozyme to GluN2B. However, we show that HOCPCA does not inhibit CaMKIIα enzymatic activity, pT286, cocondensation with GluN2B, or binding to GluN2B. Consistent with no effect on GluN2B binding in vitro or in HEK293 cells, HOCPCA also did not affect the CaMKIIα movement to excitatory synapses in hippocampal neurons in response to LTP stimuli. These findings leave the neuroprotective mechanism of HOCPCA unclear but explain why HOCPCA does not impair LTP. SIGNIFICANCE STATEMENT: This study found that the neuroprotective compound 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) does not directly interfere with Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) activity or GluN2B binding. Although this leaves the neuroprotective mechanism of HOCPCA unclear, it explains why HOCPCA does not impair long-term potentiation. Overall, this limits the use of HOCPCA as a tool compound to study CaMKII functions, but not its clinical potential.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmacology
Molecular Pharmacology 医学-药学
CiteScore
7.20
自引率
2.80%
发文量
50
审稿时长
3-6 weeks
期刊介绍: Molecular Pharmacology publishes findings derived from the application of innovative structural biology, biochemistry, biophysics, physiology, genetics, and molecular biology to basic pharmacological problems that provide mechanistic insights that are broadly important for the fields of pharmacology and toxicology. Relevant topics include: Molecular Signaling / Mechanism of Drug Action Chemical Biology / Drug Discovery Structure of Drug-Receptor Complex Systems Analysis of Drug Action Drug Transport / Metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信