Structural similarity-based search for glinides exhibiting cis- and trans-inhibitory activity toward uric acid transporter 1.

IF 3.2 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Misa Sayama, Takaaki Suzuki, Yoshie Reien, Seiji Miyauchi, Naohiko Anzai, Itsuko Ishii
{"title":"Structural similarity-based search for glinides exhibiting cis- and trans-inhibitory activity toward uric acid transporter 1.","authors":"Misa Sayama, Takaaki Suzuki, Yoshie Reien, Seiji Miyauchi, Naohiko Anzai, Itsuko Ishii","doi":"10.1016/j.molpha.2025.100028","DOIUrl":null,"url":null,"abstract":"<p><p>Various types of drugs can affect serum urate levels as side effects. Although these drugs are used to treat different diseases, they might share a structural component that acts on a common target to affect urate levels. Human urate transporter 1 (URAT1) plays an essential role in urate reabsorption at the renal proximal tubule and thus might be a common target for drugs that can affect serum urate levels. Our aim was to elucidate the structural requirements for a compound to show activity toward URAT1 and to identify clinically used drugs that can affect URAT1 activity. Our search was based on structural similarities in the compounds. [<sup>14</sup>C]Urate uptake by URAT1-expressing human embryonic kidney 293 (HEK-hURAT1) cells in the presence of an analog of a small molecule with known URAT1 activity suggested that structural moieties of salicylic acid can increase URAT1 cis-inhibitory activity. Therefore, we searched a database for drugs with substructures similar to salicylic acid. We were able to predict some types of loop diuretics, statins, and angiotensin receptor blockers as drug candidates that might affect URAT1. In addition, we found that glinides inhibit urate uptake by HEK-hURAT1 cells. Three glinides (nateglinide, mitiglinide, and repaglinide) all inhibited urate uptake by HEK-hURAT1 cells concentration-dependently (IC<sub>50</sub>: nateglinide, 39 μM; mitiglinide, 63 μM; repaglinide, 3.9 μM). Furthermore, glinides also showed trans-inhibition activity in URAT1-expressing Xenopus oocytes pretreated with the glinides. These findings suggest that glinides sharing a salicylic acid-like substructure might affect serum urate level by acting on URAT1. SIGNIFICANCE STATEMENT: Some types of loop diuretics, statins, angiotensin receptor blockers, and glinides were predicted to affect URAT1, based on their chemical structural similarity to salicylic acid, the structure of which allows it to interact with URAT1. Glinides in particular showed cis- and trans-inhibitory activity toward URAT1.</p>","PeriodicalId":18767,"journal":{"name":"Molecular Pharmacology","volume":"107 4","pages":"100028"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molpha.2025.100028","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Various types of drugs can affect serum urate levels as side effects. Although these drugs are used to treat different diseases, they might share a structural component that acts on a common target to affect urate levels. Human urate transporter 1 (URAT1) plays an essential role in urate reabsorption at the renal proximal tubule and thus might be a common target for drugs that can affect serum urate levels. Our aim was to elucidate the structural requirements for a compound to show activity toward URAT1 and to identify clinically used drugs that can affect URAT1 activity. Our search was based on structural similarities in the compounds. [14C]Urate uptake by URAT1-expressing human embryonic kidney 293 (HEK-hURAT1) cells in the presence of an analog of a small molecule with known URAT1 activity suggested that structural moieties of salicylic acid can increase URAT1 cis-inhibitory activity. Therefore, we searched a database for drugs with substructures similar to salicylic acid. We were able to predict some types of loop diuretics, statins, and angiotensin receptor blockers as drug candidates that might affect URAT1. In addition, we found that glinides inhibit urate uptake by HEK-hURAT1 cells. Three glinides (nateglinide, mitiglinide, and repaglinide) all inhibited urate uptake by HEK-hURAT1 cells concentration-dependently (IC50: nateglinide, 39 μM; mitiglinide, 63 μM; repaglinide, 3.9 μM). Furthermore, glinides also showed trans-inhibition activity in URAT1-expressing Xenopus oocytes pretreated with the glinides. These findings suggest that glinides sharing a salicylic acid-like substructure might affect serum urate level by acting on URAT1. SIGNIFICANCE STATEMENT: Some types of loop diuretics, statins, angiotensin receptor blockers, and glinides were predicted to affect URAT1, based on their chemical structural similarity to salicylic acid, the structure of which allows it to interact with URAT1. Glinides in particular showed cis- and trans-inhibitory activity toward URAT1.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmacology
Molecular Pharmacology 医学-药学
CiteScore
7.20
自引率
2.80%
发文量
50
审稿时长
3-6 weeks
期刊介绍: Molecular Pharmacology publishes findings derived from the application of innovative structural biology, biochemistry, biophysics, physiology, genetics, and molecular biology to basic pharmacological problems that provide mechanistic insights that are broadly important for the fields of pharmacology and toxicology. Relevant topics include: Molecular Signaling / Mechanism of Drug Action Chemical Biology / Drug Discovery Structure of Drug-Receptor Complex Systems Analysis of Drug Action Drug Transport / Metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信