Excessive Exercise Elicits Poly (ADP-Ribose) Polymerase-1 Activation and Global Protein PARylation Driving Muscle Dysfunction and Performance Impairment.
Barbara M Crisol, Matheus B Rocha, Beatriz Franco, Ana Paula Morelli, Carlos K Katashima, Scylas J A Junior, Fernanda S Carneiro, Renata R Braga, Rafael S Brícola, Graciana de Azambuja, Raul Gobato Costa, Andrea M Esteves, Marcelo A Mori, Maria C G Oliveira, Dennys E Cintra, José R Pauli, Filip J Larsen, Adelino S R da Silva, Eduardo R Ropelle
{"title":"Excessive Exercise Elicits Poly (ADP-Ribose) Polymerase-1 Activation and Global Protein PARylation Driving Muscle Dysfunction and Performance Impairment.","authors":"Barbara M Crisol, Matheus B Rocha, Beatriz Franco, Ana Paula Morelli, Carlos K Katashima, Scylas J A Junior, Fernanda S Carneiro, Renata R Braga, Rafael S Brícola, Graciana de Azambuja, Raul Gobato Costa, Andrea M Esteves, Marcelo A Mori, Maria C G Oliveira, Dennys E Cintra, José R Pauli, Filip J Larsen, Adelino S R da Silva, Eduardo R Ropelle","doi":"10.1016/j.molmet.2025.102135","DOIUrl":null,"url":null,"abstract":"<p><p>Excessive exercise combined with inadequate recovery time may trigger fatigue, performance impairment, and ultimately the overtraining syndrome. The intramyocellular mechanisms involved in the overtraining syndrome remain only partially known. Here, we combined multi-omics analyses from isogenic BXD mouse strains with a mouse model of overtraining and excessive exercise protocol in mice and humans to evaluate the molecular mechanism involved in the performance impairment induced by excessive exercise. We identified that BXD mouse strains with elevated levels of Parp1 gene expression in the skeletal muscle displayed features like overtraining syndrome and abnormal muscle genetic signature. High PARP1 protein content and aberrant PARylation of proteins were detected in the skeletal muscle of overtrained, but not in trained mice. Overtraining syndrome reduced mitochondrial function promoted by exercise training, induced muscle hyperalgesia, reduced muscle fiber size and promoted a similar gene signature of myopathy and atrophy models. Short periods of excessive exercise also increased PARylation in the skeletal muscle of mice and healthy subjects. The pharmacological inhibition of PARP1, using Olaparib, and genetic Parp1 ablation, preserved muscle anatomy and protected against physical performance impairment and other symptoms of the overtraining syndrome in mice. In conclusion, PARP1 excessive activation is related to muscle abnormalities led by long or short periods of excessive exercise, and here we suggest that PARP1 is a potential target in the treatment and prevention of overtraining syndrome.</p>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":" ","pages":"102135"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molmet.2025.102135","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Excessive exercise combined with inadequate recovery time may trigger fatigue, performance impairment, and ultimately the overtraining syndrome. The intramyocellular mechanisms involved in the overtraining syndrome remain only partially known. Here, we combined multi-omics analyses from isogenic BXD mouse strains with a mouse model of overtraining and excessive exercise protocol in mice and humans to evaluate the molecular mechanism involved in the performance impairment induced by excessive exercise. We identified that BXD mouse strains with elevated levels of Parp1 gene expression in the skeletal muscle displayed features like overtraining syndrome and abnormal muscle genetic signature. High PARP1 protein content and aberrant PARylation of proteins were detected in the skeletal muscle of overtrained, but not in trained mice. Overtraining syndrome reduced mitochondrial function promoted by exercise training, induced muscle hyperalgesia, reduced muscle fiber size and promoted a similar gene signature of myopathy and atrophy models. Short periods of excessive exercise also increased PARylation in the skeletal muscle of mice and healthy subjects. The pharmacological inhibition of PARP1, using Olaparib, and genetic Parp1 ablation, preserved muscle anatomy and protected against physical performance impairment and other symptoms of the overtraining syndrome in mice. In conclusion, PARP1 excessive activation is related to muscle abnormalities led by long or short periods of excessive exercise, and here we suggest that PARP1 is a potential target in the treatment and prevention of overtraining syndrome.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.