Tanner J Zachem, Jacob E Sperber, Sully F Chen, Syed M Adil, Benjamin D Wissel, Gregory Chamberlin, Edwin Owolo, Annee Nguyen, Kerri-Anne Crowell, James E Herndon, Ralph Abi Hachem, David W Jang, Thomas J Cummings, Margaret O Johnson, William Eward, Anoop P Patel, Jordan M Komisarow, Steven H Cook, Derek Southwell, Peter E Fecci, Allan H Friedman, C Rory Goodwin, Patrick J Codd
{"title":"Intraoperative brain tumor classification via laser-induced fluorescence spectroscopy and machine learning.","authors":"Tanner J Zachem, Jacob E Sperber, Sully F Chen, Syed M Adil, Benjamin D Wissel, Gregory Chamberlin, Edwin Owolo, Annee Nguyen, Kerri-Anne Crowell, James E Herndon, Ralph Abi Hachem, David W Jang, Thomas J Cummings, Margaret O Johnson, William Eward, Anoop P Patel, Jordan M Komisarow, Steven H Cook, Derek Southwell, Peter E Fecci, Allan H Friedman, C Rory Goodwin, Patrick J Codd","doi":"10.3171/2024.12.JNS242041","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To optimize neurosurgical tumor resection, tissue types and borders must be appropriately identified. Authors of this study established the use of a nondestructive laser-based endogenous fluorescence spectroscopy device, \"TumorID,\" to almost immediately classify a specimen as glioma, meningioma, pituitary adenoma, or nonneoplastic tissue in the operating room, utilizing a machine learning algorithm.</p><p><strong>Methods: </strong>TumorID requires only 0.5 seconds to collect data, without the need for any dyes or tissue manipulation, and utilizes a 100-mW, 405-nm laser that does not damage the tissue. The system was used in the operating room to scan ex vivo specimens from 46 patients (mean age 52 years) with glioma (8 patients), meningioma (10 patients), pituitary adenoma (23 patients), and nonneoplastic tissue resected during an epilepsy operation (5 patients). A support vector machine algorithm was trained to distinguish between these lesions and classify them in near real time. Statistical significance was determined through a generalized estimating equation on the area under the known fluorophore emission regions for free reduced nicotinamide adenine dinucleotide (NADH), bound NADH, flavin adenine dinucleotide, and neutral porphyrins.</p><p><strong>Results: </strong>Ultimately, the machine learning model showed a high degree of classification power with a multiclass area under the receiver operating characteristic curve of 0.809 ± 0.002. The areas under the curve for neutral porphyrins were found to be statistically significant (p < 0.001) and to have the largest impact on model output.</p><p><strong>Conclusions: </strong>This initial ex vivo clinical study demonstrated the ability of TumorID to rapidly differentiate and classify various pathologies and surrounding brain in a configuration that can be easily translated to scan in vivo. This classification power could allow TumorID to augment surgical decision-making by enabling rapid intraoperative tissue diagnostics and border delineation, potentially improving patient outcomes by allowing for a more informed and complete resection.</p>","PeriodicalId":16505,"journal":{"name":"Journal of neurosurgery","volume":" ","pages":"1-10"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3171/2024.12.JNS242041","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To optimize neurosurgical tumor resection, tissue types and borders must be appropriately identified. Authors of this study established the use of a nondestructive laser-based endogenous fluorescence spectroscopy device, "TumorID," to almost immediately classify a specimen as glioma, meningioma, pituitary adenoma, or nonneoplastic tissue in the operating room, utilizing a machine learning algorithm.
Methods: TumorID requires only 0.5 seconds to collect data, without the need for any dyes or tissue manipulation, and utilizes a 100-mW, 405-nm laser that does not damage the tissue. The system was used in the operating room to scan ex vivo specimens from 46 patients (mean age 52 years) with glioma (8 patients), meningioma (10 patients), pituitary adenoma (23 patients), and nonneoplastic tissue resected during an epilepsy operation (5 patients). A support vector machine algorithm was trained to distinguish between these lesions and classify them in near real time. Statistical significance was determined through a generalized estimating equation on the area under the known fluorophore emission regions for free reduced nicotinamide adenine dinucleotide (NADH), bound NADH, flavin adenine dinucleotide, and neutral porphyrins.
Results: Ultimately, the machine learning model showed a high degree of classification power with a multiclass area under the receiver operating characteristic curve of 0.809 ± 0.002. The areas under the curve for neutral porphyrins were found to be statistically significant (p < 0.001) and to have the largest impact on model output.
Conclusions: This initial ex vivo clinical study demonstrated the ability of TumorID to rapidly differentiate and classify various pathologies and surrounding brain in a configuration that can be easily translated to scan in vivo. This classification power could allow TumorID to augment surgical decision-making by enabling rapid intraoperative tissue diagnostics and border delineation, potentially improving patient outcomes by allowing for a more informed and complete resection.
期刊介绍:
The Journal of Neurosurgery, Journal of Neurosurgery: Spine, Journal of Neurosurgery: Pediatrics, and Neurosurgical Focus are devoted to the publication of original works relating primarily to neurosurgery, including studies in clinical neurophysiology, organic neurology, ophthalmology, radiology, pathology, and molecular biology. The Editors and Editorial Boards encourage submission of clinical and laboratory studies. Other manuscripts accepted for review include technical notes on instruments or equipment that are innovative or useful to clinicians and researchers in the field of neuroscience; papers describing unusual cases; manuscripts on historical persons or events related to neurosurgery; and in Neurosurgical Focus, occasional reviews. Letters to the Editor commenting on articles recently published in the Journal of Neurosurgery, Journal of Neurosurgery: Spine, and Journal of Neurosurgery: Pediatrics are welcome.