Fu Lin , Jiaxin Li , Lei Zhou , Rigui Yi , Yingge Chen , Shuai He
{"title":"Targeting vulnerability in tumor therapy: Dihydroorotate dehydrogenase","authors":"Fu Lin , Jiaxin Li , Lei Zhou , Rigui Yi , Yingge Chen , Shuai He","doi":"10.1016/j.lfs.2025.123612","DOIUrl":null,"url":null,"abstract":"<div><div>Dihydroorotate dehydrogenase (DHODH) is a key enzyme in the de novo pyrimidine biosynthetic pathway and a recognized therapeutic target in various diseases. In oncology research, DHODH has gained increasing importance and become a hot target for various tumor therapy studies. This review highlights three key points: (1) DHODH enables its diverse biological functions through its unique structural features and dominates the regulation of tumor metabolism and cell fate; (2) DHODH activates oncogenic signals, drives metastatic adaptation, and remodels drug resistance networks in tumors, making it a metabolic-signaling dual hub; and (3) DHODH inhibitors have shown significant efficacy in preclinical models of various tumors but face multiple challenges in clinical trials, including drug-related limitations and external constraints. Given these challenges, future research should explore DHODH inhibitors as a foundation for overcoming technological and translational barriers while establishing a systematic framework for the clinical application of DHODH-targeted tumor therapies.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"371 ","pages":"Article 123612"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320525002462","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Dihydroorotate dehydrogenase (DHODH) is a key enzyme in the de novo pyrimidine biosynthetic pathway and a recognized therapeutic target in various diseases. In oncology research, DHODH has gained increasing importance and become a hot target for various tumor therapy studies. This review highlights three key points: (1) DHODH enables its diverse biological functions through its unique structural features and dominates the regulation of tumor metabolism and cell fate; (2) DHODH activates oncogenic signals, drives metastatic adaptation, and remodels drug resistance networks in tumors, making it a metabolic-signaling dual hub; and (3) DHODH inhibitors have shown significant efficacy in preclinical models of various tumors but face multiple challenges in clinical trials, including drug-related limitations and external constraints. Given these challenges, future research should explore DHODH inhibitors as a foundation for overcoming technological and translational barriers while establishing a systematic framework for the clinical application of DHODH-targeted tumor therapies.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.