Environmental concentrations of glyphosate through direct or parental exposure alter nervous system development and reduce the fertility rate in zebrafish
Luis Terrazas-Salgado , Miguel Betancourt-Lozano , Alejandra García-Gasca , Isabel Alvarado-Cruz
{"title":"Environmental concentrations of glyphosate through direct or parental exposure alter nervous system development and reduce the fertility rate in zebrafish","authors":"Luis Terrazas-Salgado , Miguel Betancourt-Lozano , Alejandra García-Gasca , Isabel Alvarado-Cruz","doi":"10.1016/j.neuro.2025.04.002","DOIUrl":null,"url":null,"abstract":"<div><div>N-(phosphonomethyl)glycine (glyphosate) is the most widely used herbicide worldwide. Although it has been extensively studied, few studies use realistic environmental concentrations to assess its potential effects on fish embryos and larvae. This work aims to evaluate potential neurotoxic and reproductive effects of realistic concentrations of glyphosate in non-target aquatic species using zebrafish larvae. Biological and reproductive biomarkers (condition factor, hepatic and gonadic indices, and fertility rate) were evaluated for adults exposed to 0, 10, 100, and 1000 µg/L, while a transcriptomic comparison was carried out for larvae from both exposure scenarios at 1000 µg/L. The fertility rate of exposed parents decreased with increasing glyphosate concentration, while gonadosomatic (GSI) and hepatosomatic (HIS) indices of females treated with 100 µg/L glyphosate were significantly higher in glyphosate-exposed fish compared to the control group; however, glyphosate treatment did not significantly change GSI or HSI in males. Transcriptomic analysis in larvae showed that glyphosate could alter developmental and metabolic processes, targeting the nervous system in both exposure schemes. The ability of glyphosate to alter the development of the nervous system in larvae of exposed parents suggests that exposure to gametes could produce intergenerational alterations, with potential ecotoxicological implications that remain to be determined.</div></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"108 ","pages":"Pages 169-179"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161813X25000373","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
N-(phosphonomethyl)glycine (glyphosate) is the most widely used herbicide worldwide. Although it has been extensively studied, few studies use realistic environmental concentrations to assess its potential effects on fish embryos and larvae. This work aims to evaluate potential neurotoxic and reproductive effects of realistic concentrations of glyphosate in non-target aquatic species using zebrafish larvae. Biological and reproductive biomarkers (condition factor, hepatic and gonadic indices, and fertility rate) were evaluated for adults exposed to 0, 10, 100, and 1000 µg/L, while a transcriptomic comparison was carried out for larvae from both exposure scenarios at 1000 µg/L. The fertility rate of exposed parents decreased with increasing glyphosate concentration, while gonadosomatic (GSI) and hepatosomatic (HIS) indices of females treated with 100 µg/L glyphosate were significantly higher in glyphosate-exposed fish compared to the control group; however, glyphosate treatment did not significantly change GSI or HSI in males. Transcriptomic analysis in larvae showed that glyphosate could alter developmental and metabolic processes, targeting the nervous system in both exposure schemes. The ability of glyphosate to alter the development of the nervous system in larvae of exposed parents suggests that exposure to gametes could produce intergenerational alterations, with potential ecotoxicological implications that remain to be determined.
期刊介绍:
NeuroToxicology specializes in publishing the best peer-reviewed original research papers dealing with the effects of toxic substances on the nervous system of humans and experimental animals of all ages. The Journal emphasizes papers dealing with the neurotoxic effects of environmentally significant chemical hazards, manufactured drugs and naturally occurring compounds.