Abnormal activity in the brainstem affects gait in a neuromusculoskeletal model.

IF 5.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Daisuke Ichimura, Makoto Sawada, Kenji Wada, Ritsuko Hanajima
{"title":"Abnormal activity in the brainstem affects gait in a neuromusculoskeletal model.","authors":"Daisuke Ichimura, Makoto Sawada, Kenji Wada, Ritsuko Hanajima","doi":"10.1186/s12984-025-01596-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The ability to start and stop locomotion in response to different situations is an essential survival strategy in mammals. Mammalian locomotion is controlled by central pattern generators in the spinal cord, which are modulated by higher centers, particularly by the stimulation of the midbrain locomotor region. The midbrain locomotor region consists of the pedunculopontine nucleus and cuneiform nucleus, each having different roles in animals. Optogenetic activation of the cuneiform nucleus increases locomotion activities, whereas that of pedunculopontine nucleus decreases them. In neurological disorders such as Parkinson's disease, patients exhibit disturbed locomotion controls, including freezing of gait, which is defined as \"a brief, episodic absence or marked reduction in the forward progression of the feet despite the intention to walk.\" However, the details and pathophysiological mechanisms of freezing of gait remain unclear.</p><p><strong>Methods: </strong>In this study, we aimed to elucidate the mechanisms underlying freezing of gait using a two-dimensional neuromusculoskeletal model fixed on the sagittal plane. This model consisted of a body with seven links and 18 muscles as well as a neural system including the brainstem and spinal cord. We developed a normal condition model and then derived a model of abnormal brainstem activity by modifying the parameters of the pedunculopontine nucleus and cuneiform nucleus during the initial 3 s of walking.</p><p><strong>Results: </strong>The normal models walked successfully following internal parameter optimization using standard genetic algorithms. In an abnormal model, 156 freezing of gait events were detected among 40,000 parameter sets using a freezing of gait-identifying algorithm. Hierarchical cluster analysis identified four clusters of parameters, based on the intensities of the pedunculopontine nucleus and cuneiform nucleus activity, differentiated in physiological movement types during freezing of gait events that were similar to the clinical classification types of freezing of gait.</p><p><strong>Conclusions: </strong>Our results indicate that pedunculopontine nucleus and cuneiform nucleus activities could be linked with freezing of gait and that different modifications of those activities could generate observed freezing of gait subtypes. Our models can provide insights relevant for understanding the pathophysiological mechanisms of freezing of gait and are expected to assist in the classification of freezing of gait subtypes.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"22 1","pages":"73"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969973/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-025-01596-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The ability to start and stop locomotion in response to different situations is an essential survival strategy in mammals. Mammalian locomotion is controlled by central pattern generators in the spinal cord, which are modulated by higher centers, particularly by the stimulation of the midbrain locomotor region. The midbrain locomotor region consists of the pedunculopontine nucleus and cuneiform nucleus, each having different roles in animals. Optogenetic activation of the cuneiform nucleus increases locomotion activities, whereas that of pedunculopontine nucleus decreases them. In neurological disorders such as Parkinson's disease, patients exhibit disturbed locomotion controls, including freezing of gait, which is defined as "a brief, episodic absence or marked reduction in the forward progression of the feet despite the intention to walk." However, the details and pathophysiological mechanisms of freezing of gait remain unclear.

Methods: In this study, we aimed to elucidate the mechanisms underlying freezing of gait using a two-dimensional neuromusculoskeletal model fixed on the sagittal plane. This model consisted of a body with seven links and 18 muscles as well as a neural system including the brainstem and spinal cord. We developed a normal condition model and then derived a model of abnormal brainstem activity by modifying the parameters of the pedunculopontine nucleus and cuneiform nucleus during the initial 3 s of walking.

Results: The normal models walked successfully following internal parameter optimization using standard genetic algorithms. In an abnormal model, 156 freezing of gait events were detected among 40,000 parameter sets using a freezing of gait-identifying algorithm. Hierarchical cluster analysis identified four clusters of parameters, based on the intensities of the pedunculopontine nucleus and cuneiform nucleus activity, differentiated in physiological movement types during freezing of gait events that were similar to the clinical classification types of freezing of gait.

Conclusions: Our results indicate that pedunculopontine nucleus and cuneiform nucleus activities could be linked with freezing of gait and that different modifications of those activities could generate observed freezing of gait subtypes. Our models can provide insights relevant for understanding the pathophysiological mechanisms of freezing of gait and are expected to assist in the classification of freezing of gait subtypes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of NeuroEngineering and Rehabilitation
Journal of NeuroEngineering and Rehabilitation 工程技术-工程:生物医学
CiteScore
9.60
自引率
3.90%
发文量
122
审稿时长
24 months
期刊介绍: Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信