Chrysin's anti-inflammatory action in the central nervous system: A scoping review and an evidence-gap mapping of its mechanisms

IF 4.2 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Lucian Del Fabbro , Vandreza Cardoso Bortolotto , Luana Mota Ferreira , Marcel Henrique Marcondes Sari , Ana Flávia Furian
{"title":"Chrysin's anti-inflammatory action in the central nervous system: A scoping review and an evidence-gap mapping of its mechanisms","authors":"Lucian Del Fabbro ,&nbsp;Vandreza Cardoso Bortolotto ,&nbsp;Luana Mota Ferreira ,&nbsp;Marcel Henrique Marcondes Sari ,&nbsp;Ana Flávia Furian","doi":"10.1016/j.ejphar.2025.177602","DOIUrl":null,"url":null,"abstract":"<div><div>Neuroinflammation is a key driver in the progression of neurodegenerative diseases and central nervous system (CNS) injuries. Chrysin, a natural flavonoid, has demonstrated significant neuroprotective effects due to its anti-inflammatory, antioxidant, and anti-apoptotic properties. This scoping review systematically analyzed 29 studies published between 2005 and 2023, identified through a search of PubMed, Scopus, and Web of Science databases (yielding 1919 initial records). Chrysin mitigates neuroinflammation by inhibiting NF-κB signaling, downregulating pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), and suppressing the expression of key inflammatory enzymes, including iNOS and COX-2. It also modulates critical signaling pathways, such as PI3K/Akt/mTOR and JNK, while enhancing antioxidant defenses through increased activity of enzymes like superoxide dismutase and glutathione peroxidase. Importantly, chrysin exhibits anti-apoptotic effects by regulating the expression of apoptotic markers, including the downregulation of Bax and caspase-3 and the upregulation of Bcl-2, thereby preventing neuronal cell death. These mechanisms have been validated in preclinical CNS inflammation models, including spinal cord injury, traumatic brain injury, ischemia/reperfusion injury, Parkinson's disease, and experimental autoimmune encephalomyelitis. Despite its promising therapeutic potential, limitations such as low bioavailability and the lack of comprehensive clinical studies warrant further investigation. Addressing these gaps could enhance chrysin's translational potential as a viable neuroprotective agent for managing neuroinflammatory and neurodegenerative conditions.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"997 ","pages":"Article 177602"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299925003565","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Neuroinflammation is a key driver in the progression of neurodegenerative diseases and central nervous system (CNS) injuries. Chrysin, a natural flavonoid, has demonstrated significant neuroprotective effects due to its anti-inflammatory, antioxidant, and anti-apoptotic properties. This scoping review systematically analyzed 29 studies published between 2005 and 2023, identified through a search of PubMed, Scopus, and Web of Science databases (yielding 1919 initial records). Chrysin mitigates neuroinflammation by inhibiting NF-κB signaling, downregulating pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), and suppressing the expression of key inflammatory enzymes, including iNOS and COX-2. It also modulates critical signaling pathways, such as PI3K/Akt/mTOR and JNK, while enhancing antioxidant defenses through increased activity of enzymes like superoxide dismutase and glutathione peroxidase. Importantly, chrysin exhibits anti-apoptotic effects by regulating the expression of apoptotic markers, including the downregulation of Bax and caspase-3 and the upregulation of Bcl-2, thereby preventing neuronal cell death. These mechanisms have been validated in preclinical CNS inflammation models, including spinal cord injury, traumatic brain injury, ischemia/reperfusion injury, Parkinson's disease, and experimental autoimmune encephalomyelitis. Despite its promising therapeutic potential, limitations such as low bioavailability and the lack of comprehensive clinical studies warrant further investigation. Addressing these gaps could enhance chrysin's translational potential as a viable neuroprotective agent for managing neuroinflammatory and neurodegenerative conditions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.00
自引率
0.00%
发文量
572
审稿时长
34 days
期刊介绍: The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems. The scope includes: Behavioural pharmacology Neuropharmacology and analgesia Cardiovascular pharmacology Pulmonary, gastrointestinal and urogenital pharmacology Endocrine pharmacology Immunopharmacology and inflammation Molecular and cellular pharmacology Regenerative pharmacology Biologicals and biotherapeutics Translational pharmacology Nutriceutical pharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信