CT-based radiomics deep learning signatures for non-invasive prediction of metastatic potential in pheochromocytoma and paraganglioma: a multicohort study.
IF 4.1 2区 医学Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
{"title":"CT-based radiomics deep learning signatures for non-invasive prediction of metastatic potential in pheochromocytoma and paraganglioma: a multicohort study.","authors":"Yongjie Zhou, Yuan Zhan, Jinhong Zhao, Linhua Zhong, Fei Zou, Xuechao Zhu, Qiao Zeng, Jiayu Nan, Lianggeng Gong, Yongming Tan, Lan Liu","doi":"10.1186/s13244-025-01952-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to develop and validate CT-based radiomics deep learning signatures for the non-invasive prediction of metastatic potential in pheochromocytomas and paragangliomas (PPGLs).</p><p><strong>Methods: </strong>We conducted a retrospective analysis of 249 PPGL patients from three institutions, dividing them into training (n = 138), test1 (n = 71), and test2 (n = 40) sets. Based on the grading system for adrenal pheochromocytoma and paraganglioma (GAPP), patients were classified into low-risk (GAPP < 3) and high-risk (GAPP ≥ 3) groups. Radiomic features were extracted from CT venous phase images and modeled using six machine learning algorithms. The maximum 2D sections and 3D images of each tumor were input into four ResNet models to obtain predictive probabilities. Optimal models were selected based on receiver operating characteristic analysis and integrated with radiological features to develop a combined model, which was evaluated on external datasets, and explored prognostic information.</p><p><strong>Results: </strong>The support vector machine radiomics and 2D ResNet-50 models demonstrated good performance. By integrating these two models with intratumoral necrosis features, we constructed a combined model that achieved high accuracy, with area under the curve (AUC) values of 0.90 for the training, 0.86 for the test1, and 0.88 for the test2 sets. This model effectively stratified patients based on metastasis-free survival (p = 0.003). Its predictive ability remains robust below the 6 cm threshold, with AUC values exceeding 0.87 across all datasets.</p><p><strong>Conclusions: </strong>The combined model can predict the metastatic potential of PPGL in the preoperative stage, providing a precise surgical strategy for pheochromocytoma regarding the 6 cm surgical threshold.</p><p><strong>Critical relevance statement: </strong>The combined model, established based on radiomic and deep learning signatures, shows potential for early preoperative prediction of metastatic potential in PPGL.</p><p><strong>Key points: </strong>Metastatic potential of PPGL affects surgical approaches and prognosis. CT-based radiomics deep learning signatures can predict the metastatic potential in PPGL.3. The combined model's predictive ability remains robust below the 6-cm threshold. The combined model's predictive ability remains robust below the 6-cm threshold.</p>","PeriodicalId":13639,"journal":{"name":"Insights into Imaging","volume":"16 1","pages":"81"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971077/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insights into Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13244-025-01952-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: This study aimed to develop and validate CT-based radiomics deep learning signatures for the non-invasive prediction of metastatic potential in pheochromocytomas and paragangliomas (PPGLs).
Methods: We conducted a retrospective analysis of 249 PPGL patients from three institutions, dividing them into training (n = 138), test1 (n = 71), and test2 (n = 40) sets. Based on the grading system for adrenal pheochromocytoma and paraganglioma (GAPP), patients were classified into low-risk (GAPP < 3) and high-risk (GAPP ≥ 3) groups. Radiomic features were extracted from CT venous phase images and modeled using six machine learning algorithms. The maximum 2D sections and 3D images of each tumor were input into four ResNet models to obtain predictive probabilities. Optimal models were selected based on receiver operating characteristic analysis and integrated with radiological features to develop a combined model, which was evaluated on external datasets, and explored prognostic information.
Results: The support vector machine radiomics and 2D ResNet-50 models demonstrated good performance. By integrating these two models with intratumoral necrosis features, we constructed a combined model that achieved high accuracy, with area under the curve (AUC) values of 0.90 for the training, 0.86 for the test1, and 0.88 for the test2 sets. This model effectively stratified patients based on metastasis-free survival (p = 0.003). Its predictive ability remains robust below the 6 cm threshold, with AUC values exceeding 0.87 across all datasets.
Conclusions: The combined model can predict the metastatic potential of PPGL in the preoperative stage, providing a precise surgical strategy for pheochromocytoma regarding the 6 cm surgical threshold.
Critical relevance statement: The combined model, established based on radiomic and deep learning signatures, shows potential for early preoperative prediction of metastatic potential in PPGL.
Key points: Metastatic potential of PPGL affects surgical approaches and prognosis. CT-based radiomics deep learning signatures can predict the metastatic potential in PPGL.3. The combined model's predictive ability remains robust below the 6-cm threshold. The combined model's predictive ability remains robust below the 6-cm threshold.
期刊介绍:
Insights into Imaging (I³) is a peer-reviewed open access journal published under the brand SpringerOpen. All content published in the journal is freely available online to anyone, anywhere!
I³ continuously updates scientific knowledge and progress in best-practice standards in radiology through the publication of original articles and state-of-the-art reviews and opinions, along with recommendations and statements from the leading radiological societies in Europe.
Founded by the European Society of Radiology (ESR), I³ creates a platform for educational material, guidelines and recommendations, and a forum for topics of controversy.
A balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes I³ an indispensable source for current information in this field.
I³ is owned by the ESR, however authors retain copyright to their article according to the Creative Commons Attribution License (see Copyright and License Agreement). All articles can be read, redistributed and reused for free, as long as the author of the original work is cited properly.
The open access fees (article-processing charges) for this journal are kindly sponsored by ESR for all Members.
The journal went open access in 2012, which means that all articles published since then are freely available online.