Prediction of potential targets of aloe-emodin in the treatment of hepatocellular carcinoma using network pharmacology combined with bioinformatics.

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Jinlong Wei, Haosong Chen, Maoqi Xu, Zhenglin Zhang, Jin Wang, Wen Jiang, Weiguo Zhou, Maoming Xiong
{"title":"Prediction of potential targets of aloe-emodin in the treatment of hepatocellular carcinoma using network pharmacology combined with bioinformatics.","authors":"Jinlong Wei, Haosong Chen, Maoqi Xu, Zhenglin Zhang, Jin Wang, Wen Jiang, Weiguo Zhou, Maoming Xiong","doi":"10.1007/s12672-025-02215-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hepatocellular carcinoma is one of the most common and malignant tumors worldwide. Although aloe-emodin (AE), a pure natural drug, can effectively kill hepatocellular carcinoma cells, its internal molecular mechanism has not been fully elucidated. In this study, the anti-hepatocellular carcinoma targets of AE were predicted using network pharmacology and bioinformatics.</p><p><strong>Methods: </strong>The differentially expressed genes between hepatocellular carcinoma and normal tissues were first identified and then further intersected with the potential pharmacological target genes of AE for subsequent analysis. Moreover, the potential targets of AE were enriched and analyzed to identify potential downstream pathways. The binding ability and interaction between the above drug targets and AE were analyzed by molecular docking. The prognostic model of hepatocellular carcinoma was subsequently constructed via univariate Cox regression analysis, LASSO regression analysis and multivariate Cox regression analysis. Finally, the potential targets that can stably bind to AE were further screened through molecular dynamics simulation. Finally, we validated the potential utility of AE in treating hepatocellular carcinoma through in vitro experiments.</p><p><strong>Results: </strong>After 90 target genes related to AE were crossed with hepatocellular carcinoma differential genes, 13 cross genes were obtained. The above 13 genes might act on hepatocellular carcinoma through the following pathways: p53 signaling pathway, cell cycle, cellular sense, mismatch repair, apoptosis-multiple specifications, base example repair and DNA replication. Molecular docking revealed that the combination of the BAX, FASN, CDK1, PCNA, CLIC1, VWF, RAN, FOXM1, TGM3, CANT1, and NSMCE2 proteins with AE was relatively stable. A 4-gene prognostic model was further constructed. The area under the curve (AUC) values of the 1-year, 3-year and 5-year survival rates from the ROC curve were 0.809, 0.673 and 0.641, respectively. Molecular dynamics analysis revealed that CDK1 and PCNA were the most stable binding targets among the above proteins. CCK8 and wound healing assays revealed that AE inhibited the proliferation and migration of hepatocellular carcinoma cells at increasing concentrations. Western blot experiments revealed that AE achieved therapeutic effects on hepatocellular carcinoma by promoting apoptosis of hepatocellular carcinoma cells.</p><p><strong>Conclusions: </strong>Based on network pharmacology, bioinformatics, molecular dynamics simulation, and in vitro experimental verification, we found that AE achieved a therapeutic effect on hepatocellular carcinoma by promoting apoptosis of hepatocellular carcinoma cells.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"464"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971119/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-02215-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Hepatocellular carcinoma is one of the most common and malignant tumors worldwide. Although aloe-emodin (AE), a pure natural drug, can effectively kill hepatocellular carcinoma cells, its internal molecular mechanism has not been fully elucidated. In this study, the anti-hepatocellular carcinoma targets of AE were predicted using network pharmacology and bioinformatics.

Methods: The differentially expressed genes between hepatocellular carcinoma and normal tissues were first identified and then further intersected with the potential pharmacological target genes of AE for subsequent analysis. Moreover, the potential targets of AE were enriched and analyzed to identify potential downstream pathways. The binding ability and interaction between the above drug targets and AE were analyzed by molecular docking. The prognostic model of hepatocellular carcinoma was subsequently constructed via univariate Cox regression analysis, LASSO regression analysis and multivariate Cox regression analysis. Finally, the potential targets that can stably bind to AE were further screened through molecular dynamics simulation. Finally, we validated the potential utility of AE in treating hepatocellular carcinoma through in vitro experiments.

Results: After 90 target genes related to AE were crossed with hepatocellular carcinoma differential genes, 13 cross genes were obtained. The above 13 genes might act on hepatocellular carcinoma through the following pathways: p53 signaling pathway, cell cycle, cellular sense, mismatch repair, apoptosis-multiple specifications, base example repair and DNA replication. Molecular docking revealed that the combination of the BAX, FASN, CDK1, PCNA, CLIC1, VWF, RAN, FOXM1, TGM3, CANT1, and NSMCE2 proteins with AE was relatively stable. A 4-gene prognostic model was further constructed. The area under the curve (AUC) values of the 1-year, 3-year and 5-year survival rates from the ROC curve were 0.809, 0.673 and 0.641, respectively. Molecular dynamics analysis revealed that CDK1 and PCNA were the most stable binding targets among the above proteins. CCK8 and wound healing assays revealed that AE inhibited the proliferation and migration of hepatocellular carcinoma cells at increasing concentrations. Western blot experiments revealed that AE achieved therapeutic effects on hepatocellular carcinoma by promoting apoptosis of hepatocellular carcinoma cells.

Conclusions: Based on network pharmacology, bioinformatics, molecular dynamics simulation, and in vitro experimental verification, we found that AE achieved a therapeutic effect on hepatocellular carcinoma by promoting apoptosis of hepatocellular carcinoma cells.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信