Multi-omics insights into the roles of CCNB1, PLK1, and HPSE in breast cancer progression: implications for prognosis and immunotherapy.

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Qisheng Su, Leiming Fang, Chaofan Li, Liang Yue, Zhimin Yun, Huiqiang Zhang, Qi Liu, Ruilin Ma, Pengfei Zhong, He Liu, Zhangrong Lou, Zhi Chen, Yingxia Tan, Xiaopeng Hao, Chengjun Wu
{"title":"Multi-omics insights into the roles of CCNB1, PLK1, and HPSE in breast cancer progression: implications for prognosis and immunotherapy.","authors":"Qisheng Su, Leiming Fang, Chaofan Li, Liang Yue, Zhimin Yun, Huiqiang Zhang, Qi Liu, Ruilin Ma, Pengfei Zhong, He Liu, Zhangrong Lou, Zhi Chen, Yingxia Tan, Xiaopeng Hao, Chengjun Wu","doi":"10.1007/s12672-025-02282-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study examines the roles of Cyclin B1 (CCNB1), Polo-Like Kinase 1 (PLK1), and Heparanase (HPSE) in breast cancer progression using a multi-omics approach. These genes are known for their involvement in various cancer-related processes, but their precise contributions to breast cancer remain unclear.</p><p><strong>Methods: </strong>We employed an integrative analysis combining transcriptomics, proteomics, DNA methylation profiling, immune infiltration analysis, and single-cell RNA sequencing to investigate the expression patterns, regulatory mechanisms, and functional impacts of CCNB1, PLK1, and HPSE in breast cancer. Functional assays using si-RNA knockdown of CCNB1 and PLK1 were performed to assess their roles in cell proliferation.</p><p><strong>Results: </strong>CCNB1, PLK1, and HPSE are upregulated in breast tumors at the mRNA and protein levels. CCNB1 and PLK1 promote tumor growth and metastasis, while HPSE is linked to immune pathways. DNA methylation in BRCA correlates with prognosis, with PLK1 alterations protective for recurrence-free survival. High expression of these genes worsens prognosis, with CCNB1 as a risk factor for overall survival. Immune infiltration analysis associates these genes with tumor-infiltrating immune cells, highlighting HPSE's immunotherapeutic potential. Single-cell RNA sequencing confirms CCNB1 and PLK1 drive malignant proliferation and an immunosuppressive environment. Functional assays demonstrated that silencing CCNB1 and PLK1 significantly reduced breast cancer cell proliferation, indicating regulatory interactions among PLK1, CCNB1, and MKI67.</p><p><strong>Conclusions: </strong>This study provides evidence that CCNB1, PLK1, and HPSE are key players in breast cancer progression and potential biomarkers for prognosis. Furthermore, their roles in immune regulation suggest they could be promising targets for immunotherapy.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"471"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972280/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-02282-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: This study examines the roles of Cyclin B1 (CCNB1), Polo-Like Kinase 1 (PLK1), and Heparanase (HPSE) in breast cancer progression using a multi-omics approach. These genes are known for their involvement in various cancer-related processes, but their precise contributions to breast cancer remain unclear.

Methods: We employed an integrative analysis combining transcriptomics, proteomics, DNA methylation profiling, immune infiltration analysis, and single-cell RNA sequencing to investigate the expression patterns, regulatory mechanisms, and functional impacts of CCNB1, PLK1, and HPSE in breast cancer. Functional assays using si-RNA knockdown of CCNB1 and PLK1 were performed to assess their roles in cell proliferation.

Results: CCNB1, PLK1, and HPSE are upregulated in breast tumors at the mRNA and protein levels. CCNB1 and PLK1 promote tumor growth and metastasis, while HPSE is linked to immune pathways. DNA methylation in BRCA correlates with prognosis, with PLK1 alterations protective for recurrence-free survival. High expression of these genes worsens prognosis, with CCNB1 as a risk factor for overall survival. Immune infiltration analysis associates these genes with tumor-infiltrating immune cells, highlighting HPSE's immunotherapeutic potential. Single-cell RNA sequencing confirms CCNB1 and PLK1 drive malignant proliferation and an immunosuppressive environment. Functional assays demonstrated that silencing CCNB1 and PLK1 significantly reduced breast cancer cell proliferation, indicating regulatory interactions among PLK1, CCNB1, and MKI67.

Conclusions: This study provides evidence that CCNB1, PLK1, and HPSE are key players in breast cancer progression and potential biomarkers for prognosis. Furthermore, their roles in immune regulation suggest they could be promising targets for immunotherapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信