TRAIL induces cytokine production via the NFkB2 pathway promoting neutrophil chemotaxis and neutrophil-mediated immune-suppression in triple negative breast cancer cells
Manjari Kundu , Yoshimi E. Greer , Alexei Lobanov , Lisa Ridnour , Renee N. Donahue , Yeap Ng , Shashi Ratnayake , Karley White , Donna Voeller , Sarah Weltz , Qingrong Chen , Stephen J. Lockett , Maggie Cam , Daoud Meerzaman , David A. Wink , Roberto Weigert , Stanley Lipkowitz
{"title":"TRAIL induces cytokine production via the NFkB2 pathway promoting neutrophil chemotaxis and neutrophil-mediated immune-suppression in triple negative breast cancer cells","authors":"Manjari Kundu , Yoshimi E. Greer , Alexei Lobanov , Lisa Ridnour , Renee N. Donahue , Yeap Ng , Shashi Ratnayake , Karley White , Donna Voeller , Sarah Weltz , Qingrong Chen , Stephen J. Lockett , Maggie Cam , Daoud Meerzaman , David A. Wink , Roberto Weigert , Stanley Lipkowitz","doi":"10.1016/j.canlet.2025.217692","DOIUrl":null,"url":null,"abstract":"<div><div>Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential cancer therapeutic that induces apoptosis in cancer cells while sparing the non-malignant cells in preclinical models. However, its efficacy in clinical trials has been limited, suggesting unknown mechanisms modulating TRAIL activity in patients. We hypothesized that TRAIL treatment elicits transcriptional changes in triple negative breast cancer (TNBC) cells that alter the immune milieu. RNAseq analysis of MDA-MB-231 cells along with validation in additional cell lines demonstrated that TRAIL induced cytokines such as CXCLs 1, 2, 3, 8,11 and IL-6, which are known to modify neutrophil function. Mechanistically, TRAIL dependent induction of the cytokines was predominantly mediated by death receptor 5, caspase-8 and the non-canonical NFKB2 pathway. These cytokines produced by TRAIL-treated TNBC cells enhanced chemotaxis of normal human donor isolated neutrophils. Using TNBC xenograft models<em>,</em> TRAIL induced activation of NFkB2 pathway, cytokine production and increased neutrophil recruitment into the tumors. Moreover, preincubation of neutrophils in supernatants from TRAIL-treated TNBC cells significantly impaired neutrophil function as measured by reduced respiratory burst and cytotoxic effect against TNBC cells. Transcriptomic analysis of neutrophils incubated with either TRAIL alone or supernatant of TRAIL-treated TNBC cells revealed increased expression of inflammatory cytokines, immune modulatory genes, immune checkpoint genes, and genes implicated in delayed neutrophil apoptosis. Functional studies showed that these neutrophils suppress T cell proliferation and augment Treg suppressive phenotype. Collectively, our study demonstrates a novel role of TRAIL-induced NFKB2-dependent cytokine production that promotes neutrophil chemotaxis and neutrophil- mediated immune suppression.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"620 ","pages":"Article 217692"},"PeriodicalIF":9.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525002587","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential cancer therapeutic that induces apoptosis in cancer cells while sparing the non-malignant cells in preclinical models. However, its efficacy in clinical trials has been limited, suggesting unknown mechanisms modulating TRAIL activity in patients. We hypothesized that TRAIL treatment elicits transcriptional changes in triple negative breast cancer (TNBC) cells that alter the immune milieu. RNAseq analysis of MDA-MB-231 cells along with validation in additional cell lines demonstrated that TRAIL induced cytokines such as CXCLs 1, 2, 3, 8,11 and IL-6, which are known to modify neutrophil function. Mechanistically, TRAIL dependent induction of the cytokines was predominantly mediated by death receptor 5, caspase-8 and the non-canonical NFKB2 pathway. These cytokines produced by TRAIL-treated TNBC cells enhanced chemotaxis of normal human donor isolated neutrophils. Using TNBC xenograft models, TRAIL induced activation of NFkB2 pathway, cytokine production and increased neutrophil recruitment into the tumors. Moreover, preincubation of neutrophils in supernatants from TRAIL-treated TNBC cells significantly impaired neutrophil function as measured by reduced respiratory burst and cytotoxic effect against TNBC cells. Transcriptomic analysis of neutrophils incubated with either TRAIL alone or supernatant of TRAIL-treated TNBC cells revealed increased expression of inflammatory cytokines, immune modulatory genes, immune checkpoint genes, and genes implicated in delayed neutrophil apoptosis. Functional studies showed that these neutrophils suppress T cell proliferation and augment Treg suppressive phenotype. Collectively, our study demonstrates a novel role of TRAIL-induced NFKB2-dependent cytokine production that promotes neutrophil chemotaxis and neutrophil- mediated immune suppression.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.