Trifluridine/tipiracil induces ferroptosis by targeting p53 via the p53-SLC7A11 axis in colorectal cancer 3D organoids.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY
Maosen Huang, Yancen Wu, Xiaoxia Wei, Linyao Cheng, Lihua Fu, Haochao Yan, Wene Wei, Bo Li, Haiming Ru, Xianwei Mo, Weizhong Tang, Zijie Su, Linhai Yan
{"title":"Trifluridine/tipiracil induces ferroptosis by targeting p53 via the p53-SLC7A11 axis in colorectal cancer 3D organoids.","authors":"Maosen Huang, Yancen Wu, Xiaoxia Wei, Linyao Cheng, Lihua Fu, Haochao Yan, Wene Wei, Bo Li, Haiming Ru, Xianwei Mo, Weizhong Tang, Zijie Su, Linhai Yan","doi":"10.1038/s41419-025-07541-z","DOIUrl":null,"url":null,"abstract":"<p><p>Trifluridine/Tipiracil (FTD/TPI, TAS102) has been approved for the treatment of patients with colorectal cancer (CRC) for its promising anticancer activity enabled by its incorporation into double strands during DNA synthesis. However, the mechanisms underlying the anticancer targets of FTD/TPI remain not fully understood. Here we report our observation of the activation of ferroptosis in CRC by FTD/TPI. Mechanistically, FTD/TPI directly promotes the ubiquitination and degradation of MDM2, thereby stabilizing the p53. Nuclear accumulation of p53 subsequently downregulates SLC7A11 expression, leading to ferroptosis. Furthermore, we observed that FTD/TPI combined with sulfasalazine (SAS), a system Xc<sup>-</sup> inhibitor, works in a synergistic manner to induce ferroptosis and further inhibit the proliferation of CRC cells. Finally, we confirmed the synergistic effect of SAS and FTD/TPI on patient-derived organoids in vitro and patient-derived xenograft mouse models in vivo. Our findings are the first to reveal that FTD/TPI induces ferroptosis via the p53-SLC7A11 axis and that SAS enhances the sensitivity and therapeutic effect of FTD/TPI. These findings suggest that the synergistic effect of FTD/TPI and SAS may represent a new therapeutic strategy for patients with CRC.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"255"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972347/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07541-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Trifluridine/Tipiracil (FTD/TPI, TAS102) has been approved for the treatment of patients with colorectal cancer (CRC) for its promising anticancer activity enabled by its incorporation into double strands during DNA synthesis. However, the mechanisms underlying the anticancer targets of FTD/TPI remain not fully understood. Here we report our observation of the activation of ferroptosis in CRC by FTD/TPI. Mechanistically, FTD/TPI directly promotes the ubiquitination and degradation of MDM2, thereby stabilizing the p53. Nuclear accumulation of p53 subsequently downregulates SLC7A11 expression, leading to ferroptosis. Furthermore, we observed that FTD/TPI combined with sulfasalazine (SAS), a system Xc- inhibitor, works in a synergistic manner to induce ferroptosis and further inhibit the proliferation of CRC cells. Finally, we confirmed the synergistic effect of SAS and FTD/TPI on patient-derived organoids in vitro and patient-derived xenograft mouse models in vivo. Our findings are the first to reveal that FTD/TPI induces ferroptosis via the p53-SLC7A11 axis and that SAS enhances the sensitivity and therapeutic effect of FTD/TPI. These findings suggest that the synergistic effect of FTD/TPI and SAS may represent a new therapeutic strategy for patients with CRC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信