Nikita Markov, Sirina Sabirova, Gulnaz Sharapova, Marina Gomzikova, Anna Brichkina, Nick A Barlev, Marcel Egger, Albert Rizvanov, Hans-Uwe Simon
{"title":"Mitochondrial, metabolic and bioenergetic adaptations drive plasticity of colorectal cancer cells and shape their chemosensitivity.","authors":"Nikita Markov, Sirina Sabirova, Gulnaz Sharapova, Marina Gomzikova, Anna Brichkina, Nick A Barlev, Marcel Egger, Albert Rizvanov, Hans-Uwe Simon","doi":"10.1038/s41419-025-07596-y","DOIUrl":null,"url":null,"abstract":"<p><p>The extent of mitochondrial heterogeneity and the presence of mitochondrial archetypes in cancer remain unknown. Mitochondria play a central role in the metabolic reprogramming that occurs in cancer cells. This process adjusts the activity of metabolic pathways to support growth, proliferation, and survival of cancer cells. Using a panel of colorectal cancer (CRC) cell lines, we revealed extensive differences in their mitochondrial composition, suggesting functional specialisation of these organelles. We differentiated bioenergetic and mitochondrial phenotypes, which point to different strategies used by CRC cells to maintain their sustainability. Moreover, the efficacy of various treatments targeting metabolic pathways was dependent on the respiration and glycolysis levels of cancer cells. Furthermore, we identified metabolites associated with both bioenergetic profiles and cell responses to treatments. The levels of these molecules can be used to predict the therapeutic efficacy of anti-cancer drugs and identify metabolic vulnerabilities of CRC. Our study indicates that the efficacy of CRC therapies is closely linked to mitochondrial status and cellular bioenergetics.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"253"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971274/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07596-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The extent of mitochondrial heterogeneity and the presence of mitochondrial archetypes in cancer remain unknown. Mitochondria play a central role in the metabolic reprogramming that occurs in cancer cells. This process adjusts the activity of metabolic pathways to support growth, proliferation, and survival of cancer cells. Using a panel of colorectal cancer (CRC) cell lines, we revealed extensive differences in their mitochondrial composition, suggesting functional specialisation of these organelles. We differentiated bioenergetic and mitochondrial phenotypes, which point to different strategies used by CRC cells to maintain their sustainability. Moreover, the efficacy of various treatments targeting metabolic pathways was dependent on the respiration and glycolysis levels of cancer cells. Furthermore, we identified metabolites associated with both bioenergetic profiles and cell responses to treatments. The levels of these molecules can be used to predict the therapeutic efficacy of anti-cancer drugs and identify metabolic vulnerabilities of CRC. Our study indicates that the efficacy of CRC therapies is closely linked to mitochondrial status and cellular bioenergetics.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism