Cancer-associated fibroblasts secrete CSF3 to promote TNBC progression via enhancing PGM2L1-dependent glycolysis reprogramming.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY
Wenqi Qin, Bing Chen, Xin Li, Wenjing Zhao, Lijuan Wang, Ning Zhang, Xiaolong Wang, Dan Luo, Yiran Liang, Yaming Li, Xi Chen, Tong Chen, Qifeng Yang
{"title":"Cancer-associated fibroblasts secrete CSF3 to promote TNBC progression via enhancing PGM2L1-dependent glycolysis reprogramming.","authors":"Wenqi Qin, Bing Chen, Xin Li, Wenjing Zhao, Lijuan Wang, Ning Zhang, Xiaolong Wang, Dan Luo, Yiran Liang, Yaming Li, Xi Chen, Tong Chen, Qifeng Yang","doi":"10.1038/s41419-025-07580-6","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is characterized by a pronounced hypoxic tumor microenvironment, with cancer-associated fibroblasts (CAFs) serving as the predominant cellular component and playing crucial roles in regulating tumor progression. However, the mechanism by which CAFs affect the biological behavior of tumor cells in hypoxic environment remain elusive. This study employed a bead-based multiplex immunoassay to analyze a panel of cytokines/chemokines and identified colony stimulating factor 3 (CSF3) as a significantly elevated component in the secretome of hypoxic CAFs. We found that CSF3 promoted the invasive behavior of TNBC cells by activating the downstream signaling pathway of its receptor, CSF3R. RNA sequencing analysis further revealed that phosphoglucomutase 2-like 1 (PGM2L1) is a downstream target of the CSF3/CSF3R signaling, enhancing the glycolysis pathway and providing energy to support the malignant phenotype of breast cancer. In vivo, we further confirmed that CSF3 promotes TNBC progression by targeting PGM2L1. These findings suggest that targeting CSF3/CSF3R may represent a potential therapeutic approach for TNBC.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"249"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971334/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07580-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Triple-negative breast cancer (TNBC) is characterized by a pronounced hypoxic tumor microenvironment, with cancer-associated fibroblasts (CAFs) serving as the predominant cellular component and playing crucial roles in regulating tumor progression. However, the mechanism by which CAFs affect the biological behavior of tumor cells in hypoxic environment remain elusive. This study employed a bead-based multiplex immunoassay to analyze a panel of cytokines/chemokines and identified colony stimulating factor 3 (CSF3) as a significantly elevated component in the secretome of hypoxic CAFs. We found that CSF3 promoted the invasive behavior of TNBC cells by activating the downstream signaling pathway of its receptor, CSF3R. RNA sequencing analysis further revealed that phosphoglucomutase 2-like 1 (PGM2L1) is a downstream target of the CSF3/CSF3R signaling, enhancing the glycolysis pathway and providing energy to support the malignant phenotype of breast cancer. In vivo, we further confirmed that CSF3 promotes TNBC progression by targeting PGM2L1. These findings suggest that targeting CSF3/CSF3R may represent a potential therapeutic approach for TNBC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信