Yi Guo , Mei Li , Xiaoyu Liu , Huiling Duo , Boya Huang , Hengtai Lu , Xiangyu Zhang , Xuzhe Li , Ye Zhao , Kaoqi Lian , Tengfei Liu , Yun Shi , Yuan Gao , Li Meng , Di Zhao , Li Song , Rui Jiang , Haishui Shi
{"title":"Perinatal exposure to polystyrene nanoplastics alters socioemotional behaviors via the microbiota–gut–brain axis in adult offspring mice","authors":"Yi Guo , Mei Li , Xiaoyu Liu , Huiling Duo , Boya Huang , Hengtai Lu , Xiangyu Zhang , Xuzhe Li , Ye Zhao , Kaoqi Lian , Tengfei Liu , Yun Shi , Yuan Gao , Li Meng , Di Zhao , Li Song , Rui Jiang , Haishui Shi","doi":"10.1016/j.bbi.2025.04.002","DOIUrl":null,"url":null,"abstract":"<div><div>Polystyrene nanoplastics (PS-NPs), ubiquitous environmental contaminants, have been detected in various tissues of humans and animals, raising significant concerns regarding their potential health hazards. The long-term consequences of PS-NPs exposure during early developmental stages remain inadequately characterized. In this study, we established a murine model to investigate the chronic oral administration of PS-NPs via drinking water during the perinatal period, with a focus on elucidating the impact of PS-NPs ingestion on the social behaviors of adult offspring and the underlying mechanisms, particularly those involving the gut–brain axis. Our findings revealed that perinatal PS-NPs exposure elicited depression-like behaviors, diminished social dominance, and reduced social interactions in adult offspring. Additionally, we observed a decrease in dendritic spine density within hippocampal neurons, along with ultrastructural damage to hippocampal neurons and synapses in the adult offspring. PS-NPs exposure also led to a reduction in the richness and evenness of gut microbiota species composition in both male and female mice, with gut dysbiosis being particularly pronounced in adult males. Furthermore, alterations in metabolite abundance and metabolic pathways were detected in the hippocampus of both male and female adult offspring. Notably, a significant correlation was identified between the relative abundance of intestinal microorganisms and hippocampal metabolites. These results offer new insights into the association between early-life PS-NPs exposure and adult social behaviors, mediated through the microbiota–gut–brain axis.</div></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":"128 ","pages":"Pages 121-133"},"PeriodicalIF":8.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889159125001242","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Polystyrene nanoplastics (PS-NPs), ubiquitous environmental contaminants, have been detected in various tissues of humans and animals, raising significant concerns regarding their potential health hazards. The long-term consequences of PS-NPs exposure during early developmental stages remain inadequately characterized. In this study, we established a murine model to investigate the chronic oral administration of PS-NPs via drinking water during the perinatal period, with a focus on elucidating the impact of PS-NPs ingestion on the social behaviors of adult offspring and the underlying mechanisms, particularly those involving the gut–brain axis. Our findings revealed that perinatal PS-NPs exposure elicited depression-like behaviors, diminished social dominance, and reduced social interactions in adult offspring. Additionally, we observed a decrease in dendritic spine density within hippocampal neurons, along with ultrastructural damage to hippocampal neurons and synapses in the adult offspring. PS-NPs exposure also led to a reduction in the richness and evenness of gut microbiota species composition in both male and female mice, with gut dysbiosis being particularly pronounced in adult males. Furthermore, alterations in metabolite abundance and metabolic pathways were detected in the hippocampus of both male and female adult offspring. Notably, a significant correlation was identified between the relative abundance of intestinal microorganisms and hippocampal metabolites. These results offer new insights into the association between early-life PS-NPs exposure and adult social behaviors, mediated through the microbiota–gut–brain axis.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.