Development of radiomics-based models on mammograms with mass lesions to predict prognostically relevant characteristics of invasive breast cancer in a screening cohort.

IF 6.4 1区 医学 Q1 ONCOLOGY
Jim Peters, Merle M van Leeuwen, Nikita Moriakov, Jos A A M van Dijck, Ritse M Mann, Jonas Teuwen, Esther H Lips, Alexandra W van den Belt-Dusebout, Jelle Wesseling, Bas B L Penning de Vries, Sarah Verboom, Nico Karssemeijer, Sjoerd G Elias, Mireille J M Broeders
{"title":"Development of radiomics-based models on mammograms with mass lesions to predict prognostically relevant characteristics of invasive breast cancer in a screening cohort.","authors":"Jim Peters, Merle M van Leeuwen, Nikita Moriakov, Jos A A M van Dijck, Ritse M Mann, Jonas Teuwen, Esther H Lips, Alexandra W van den Belt-Dusebout, Jelle Wesseling, Bas B L Penning de Vries, Sarah Verboom, Nico Karssemeijer, Sjoerd G Elias, Mireille J M Broeders","doi":"10.1038/s41416-025-02995-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Optimizing breast-screening performance involves minimizing overdiagnosis of prognostically favorable invasive breast cancer (IBC) that does not need immediate recall and underdiagnosis of prognostically unfavorable IBC that is not recalled timely. We investigated whether mammographic features of masses predict prognostically relevant IBC characteristics.</p><p><strong>Methods: </strong>In a screening cohort, we obtained pathological information of 1587 IBCs presenting as a mass through the nationwide cancer registry and pathology databank. We developed models based on mammographic tumor appearance to predict whether IBC was prognostically favorable (T1N0M0 luminal A-like) or unfavorable. Models were based on 1095 positive screening mammograms (possible overdiagnosis), or on 603 last negative mammograms with in retrospect visible masses (possible underdiagnosis). We calculated performance metrics using cross-validation.</p><p><strong>Results: </strong>23.5% of masses were prognostically favorable IBC. Using 1095 positive mammograms, the model's predictions to have prognostically favorable IBC (10th-90th percentile range 8.7-47.0%) yielded AUC 0.75 (SD across repeats 0.01), slope 1.16 (SD 0.07). Performance in 603 last negative screening mammograms with masses was poor: AUC 0.60 (SD 0.02), slope 0.85 (SD 0.28).</p><p><strong>Conclusions: </strong>Mammography-based models from masses representing IBC at time of recall (possible overdiagnosis) predict prognostically relevant characteristics of IBC. Models based on in retrospect visible masses (possible underdiagnosis) performed poorly.</p>","PeriodicalId":9243,"journal":{"name":"British Journal of Cancer","volume":" ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41416-025-02995-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Optimizing breast-screening performance involves minimizing overdiagnosis of prognostically favorable invasive breast cancer (IBC) that does not need immediate recall and underdiagnosis of prognostically unfavorable IBC that is not recalled timely. We investigated whether mammographic features of masses predict prognostically relevant IBC characteristics.

Methods: In a screening cohort, we obtained pathological information of 1587 IBCs presenting as a mass through the nationwide cancer registry and pathology databank. We developed models based on mammographic tumor appearance to predict whether IBC was prognostically favorable (T1N0M0 luminal A-like) or unfavorable. Models were based on 1095 positive screening mammograms (possible overdiagnosis), or on 603 last negative mammograms with in retrospect visible masses (possible underdiagnosis). We calculated performance metrics using cross-validation.

Results: 23.5% of masses were prognostically favorable IBC. Using 1095 positive mammograms, the model's predictions to have prognostically favorable IBC (10th-90th percentile range 8.7-47.0%) yielded AUC 0.75 (SD across repeats 0.01), slope 1.16 (SD 0.07). Performance in 603 last negative screening mammograms with masses was poor: AUC 0.60 (SD 0.02), slope 0.85 (SD 0.28).

Conclusions: Mammography-based models from masses representing IBC at time of recall (possible overdiagnosis) predict prognostically relevant characteristics of IBC. Models based on in retrospect visible masses (possible underdiagnosis) performed poorly.

发展基于放射组学的乳房x光片肿块模型,以预测筛查队列中浸润性乳腺癌的预后相关特征。
背景:优化乳腺筛查表现包括尽量减少对预后有利的浸润性乳腺癌(IBC)的过度诊断(不需要立即召回)和对预后不利的浸润性乳腺癌(不及时召回)的漏诊。我们研究肿块的乳房x线摄影特征是否能预测与预后相关的IBC特征。方法:在一个筛查队列中,我们通过全国癌症登记和病理数据库获得了1587例IBCs的病理信息。我们建立了基于乳房x线摄影肿瘤外观的模型来预测IBC是预后有利(T1N0M0腔内a样)还是不利。模型基于1095张阳性筛查乳房x光片(可能过度诊断),或603张回顾可见肿块的最后阴性乳房x光片(可能诊断不足)。我们使用交叉验证计算性能指标。结果:23.5%肿块为预后良好的IBC。使用1095张阳性乳房x线照片,该模型预测IBC预后有利(第10 -90百分位范围8.7-47.0%)的AUC为0.75(重复间SD为0.01),斜率为1.16 (SD为0.07)。603例乳腺肿块阴性筛查表现较差:AUC 0.60 (SD 0.02),斜率0.85 (SD 0.28)。结论:基于乳房x线摄影的模型在回忆时代表IBC(可能过度诊断)预测IBC的预后相关特征。基于回顾可见肿块(可能诊断不足)的模型表现不佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
British Journal of Cancer
British Journal of Cancer 医学-肿瘤学
CiteScore
15.10
自引率
1.10%
发文量
383
审稿时长
6 months
期刊介绍: The British Journal of Cancer is one of the most-cited general cancer journals, publishing significant advances in translational and clinical cancer research.It also publishes high-quality reviews and thought-provoking comment on all aspects of cancer prevention,diagnosis and treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信