Transcriptome profiles of blastocysts originating from oocytes matured in follicular fluid from preovulatory follicles of greater or lesser maturity.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Allyson E Stokes, Hannah M Clark, J Lannett Edwards, Rebecca R Payton, Jon E Beever, Trevor F Freeman, Emma A Hessock, F Neal Schrick, Sarah E Moorey
{"title":"Transcriptome profiles of blastocysts originating from oocytes matured in follicular fluid from preovulatory follicles of greater or lesser maturity.","authors":"Allyson E Stokes, Hannah M Clark, J Lannett Edwards, Rebecca R Payton, Jon E Beever, Trevor F Freeman, Emma A Hessock, F Neal Schrick, Sarah E Moorey","doi":"10.1186/s12864-025-11521-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Oocyte competence for early embryo development relies on intercellular communication between the maturing oocyte and preovulatory follicle. Preovulatory follicle maturity, as indicated by serum estradiol concentration or follicle diameter, has previously been linked to pregnancy, follicular fluid metabolites, cumulus-oocyte metabolism, and oocyte competency for embryo development. Such relationships indicate metabolic and developmental programming of the oocyte based on the preovulatory follicle's physiological status, but downstream impacts on the molecular signature of blastocysts have not been examined. We hypothesized that supplementing maturing oocytes with follicular fluid originating from preovulatory follicles of greater or lesser maturity would impact the transcriptome of resulting blastocysts and indicate metabolic programming of the embryo that originated from the oocyte's maturation environment. The objective was to investigate the effect of follicle maturity on the oocyte by examining the transcriptome of blastocysts originating from oocytes matured in the presence of follicular fluid from preovulatory follicles of greater or lesser maturity.</p><p><strong>Results: </strong>In vitro maturing oocytes were supplemented with follicular fluid collected from preovulatory follicles of greater or lesser maturity. Following identical embryo culture procedures, RNA-sequencing was performed on pools of 2 blastocysts (Greater, n = 12; Lesser, n = 15; all with stage code = 7 and quality code = 1). A total of 12,310 genes were identified in blastocysts after filtering to remove lowly abundant genes. There were 113 genes that differed in expression between blastocysts originating from oocytes matured in greater versus lesser maturity follicular fluid (eFDR < 0.01). Although no pathways were significantly enriched with differentially expressed genes, transcriptome profiles suggested improved Wnt/β-catenin signaling, metabolism, and protection from oxidative stress in blastocysts derived from oocytes matured in greater maturity follicular fluid, while potential unregulated cell growth presented in blastocysts resulting from the lesser follicle maturity treatment.</p><p><strong>Conclusions: </strong>Follicular fluid from preovulatory follicles of greater physiological maturity may better prepare maturing oocytes for early embryo development. Furthermore, oocytes matured in follicular fluid from preovulatory follicles of lesser maturity may attempt to overcompensate for nutrient deficit during oocyte maturation, leading to uncontrolled cellular growth and increased oxidative stress.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"339"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969919/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11521-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Oocyte competence for early embryo development relies on intercellular communication between the maturing oocyte and preovulatory follicle. Preovulatory follicle maturity, as indicated by serum estradiol concentration or follicle diameter, has previously been linked to pregnancy, follicular fluid metabolites, cumulus-oocyte metabolism, and oocyte competency for embryo development. Such relationships indicate metabolic and developmental programming of the oocyte based on the preovulatory follicle's physiological status, but downstream impacts on the molecular signature of blastocysts have not been examined. We hypothesized that supplementing maturing oocytes with follicular fluid originating from preovulatory follicles of greater or lesser maturity would impact the transcriptome of resulting blastocysts and indicate metabolic programming of the embryo that originated from the oocyte's maturation environment. The objective was to investigate the effect of follicle maturity on the oocyte by examining the transcriptome of blastocysts originating from oocytes matured in the presence of follicular fluid from preovulatory follicles of greater or lesser maturity.

Results: In vitro maturing oocytes were supplemented with follicular fluid collected from preovulatory follicles of greater or lesser maturity. Following identical embryo culture procedures, RNA-sequencing was performed on pools of 2 blastocysts (Greater, n = 12; Lesser, n = 15; all with stage code = 7 and quality code = 1). A total of 12,310 genes were identified in blastocysts after filtering to remove lowly abundant genes. There were 113 genes that differed in expression between blastocysts originating from oocytes matured in greater versus lesser maturity follicular fluid (eFDR < 0.01). Although no pathways were significantly enriched with differentially expressed genes, transcriptome profiles suggested improved Wnt/β-catenin signaling, metabolism, and protection from oxidative stress in blastocysts derived from oocytes matured in greater maturity follicular fluid, while potential unregulated cell growth presented in blastocysts resulting from the lesser follicle maturity treatment.

Conclusions: Follicular fluid from preovulatory follicles of greater physiological maturity may better prepare maturing oocytes for early embryo development. Furthermore, oocytes matured in follicular fluid from preovulatory follicles of lesser maturity may attempt to overcompensate for nutrient deficit during oocyte maturation, leading to uncontrolled cellular growth and increased oxidative stress.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信