CGLoop: a neural network framework for chromatin loop prediction.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Junfeng Wang, Lili Wu, Jingjing Wei, Chaokun Yan, Huimin Luo, Junwei Luo, Fei Guo
{"title":"CGLoop: a neural network framework for chromatin loop prediction.","authors":"Junfeng Wang, Lili Wu, Jingjing Wei, Chaokun Yan, Huimin Luo, Junwei Luo, Fei Guo","doi":"10.1186/s12864-025-11531-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chromosomes of species exhibit a variety of high-dimensional organizational features, and chromatin loops, which are fundamental structures in the three-dimensional (3D) structure of the genome. Chromatin loops are visible speckled patterns on Hi-C contact matrix generated by chromosome conformation capture methods. The chromatin loops play an important role in gene expression, and predicting the chromatin loops generated during whole genome interactions is crucial for a deeper understanding of the 3D genome structure and function.</p><p><strong>Results: </strong>Here, we propose CGLoop, a deep learning based neural network framework that detects chromatin loops in Hi-C contact matrix. CGLoop combines the convolutional neural network (CNN) with Convolutional Block Attention Module (CBAM) and the Bidirectional Gated Recurrent Unit (BiGRU) to capture important features related to chromatin loops by comprehensively analyzing the Hi-C contact matrix, enabling the prediction of candidate chromatin loops. And CGLoop employs a density based clustering method to filter the candidate chromatin loops predicted by the neural network model. Finally, we compared CGloop with other chromatin loops prediction methods on several cell line including GM12878, K562, IMR90, and mESC. The code is available from https://github.com/wllwuliliwll/CGLoop .</p><p><strong>Conclusions: </strong>The experimental results show that, loops predicted by CGLoop show high APA scores and there is an enrichment of multiple transcription factors and binding proteins at the predicted loops anchors, which outperforms other methods in terms of accuracy and validity of chromatin loops prediction.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"342"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971808/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11531-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Chromosomes of species exhibit a variety of high-dimensional organizational features, and chromatin loops, which are fundamental structures in the three-dimensional (3D) structure of the genome. Chromatin loops are visible speckled patterns on Hi-C contact matrix generated by chromosome conformation capture methods. The chromatin loops play an important role in gene expression, and predicting the chromatin loops generated during whole genome interactions is crucial for a deeper understanding of the 3D genome structure and function.

Results: Here, we propose CGLoop, a deep learning based neural network framework that detects chromatin loops in Hi-C contact matrix. CGLoop combines the convolutional neural network (CNN) with Convolutional Block Attention Module (CBAM) and the Bidirectional Gated Recurrent Unit (BiGRU) to capture important features related to chromatin loops by comprehensively analyzing the Hi-C contact matrix, enabling the prediction of candidate chromatin loops. And CGLoop employs a density based clustering method to filter the candidate chromatin loops predicted by the neural network model. Finally, we compared CGloop with other chromatin loops prediction methods on several cell line including GM12878, K562, IMR90, and mESC. The code is available from https://github.com/wllwuliliwll/CGLoop .

Conclusions: The experimental results show that, loops predicted by CGLoop show high APA scores and there is an enrichment of multiple transcription factors and binding proteins at the predicted loops anchors, which outperforms other methods in terms of accuracy and validity of chromatin loops prediction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信