Overcoming challenges in prevalence meta-analysis: the case for the Freeman-Tukey transform.

IF 3.9 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Jazeel Abdulmajeed, Tawanda Chivese, Suhail A R Doi
{"title":"Overcoming challenges in prevalence meta-analysis: the case for the Freeman-Tukey transform.","authors":"Jazeel Abdulmajeed, Tawanda Chivese, Suhail A R Doi","doi":"10.1186/s12874-025-02527-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Traditional statistical methods assume normally distributed continuous variables, making them unsuitable for analysis of prevalence proportions. To address this problem, two commonly utilized variance-stabilizing transformations (logit and Freeman-Tukey) are empirically evaluated in this study to provide clarity on the optimal choice among these transforms for researchers.</p><p><strong>Methods: </strong>Simulated datasets were created using multiple Monte Carlo simulations, with varying input parameters to examine transformation estimator performance under varying scenarios. Additionally, the research delved into how sample size and proportion influenced the variability of the Freeman-Tukey transform. Performance was evaluated for both single prevalence proportions (coverage, interval width and variation over sample size) as well as for meta-analysis of prevalence (absolute mean deviation of pooled proportions, coverage and interval width).</p><p><strong>Results: </strong>For extreme proportions we found that the Freeman-Tukey transform provides better coverage and narrower intervals compared to the logit transformation, and for non-extreme proportions, both transformations demonstrated similar performance in terms of single proportions. The variability of Freeman-Tukey transformed proportions with sample size is only seen when the range of proportions under scrutiny are very small (~ 0.005), and the variability of the Freeman-Tukey transform's value occurs in the third decimal place (0.007). In meta-analysis, the Freeman-Tukey transformation consistently showed lower absolute deviation from the population parameter, with narrower confidence intervals, and improved coverage compared to the same meta-analyses using the logit transformation.</p><p><strong>Conclusion: </strong>The results suggest that the Freeman-Tukey transform is to be preferred over the logit transformation in the meta-analysis of prevalence.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"89"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971753/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-025-02527-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Traditional statistical methods assume normally distributed continuous variables, making them unsuitable for analysis of prevalence proportions. To address this problem, two commonly utilized variance-stabilizing transformations (logit and Freeman-Tukey) are empirically evaluated in this study to provide clarity on the optimal choice among these transforms for researchers.

Methods: Simulated datasets were created using multiple Monte Carlo simulations, with varying input parameters to examine transformation estimator performance under varying scenarios. Additionally, the research delved into how sample size and proportion influenced the variability of the Freeman-Tukey transform. Performance was evaluated for both single prevalence proportions (coverage, interval width and variation over sample size) as well as for meta-analysis of prevalence (absolute mean deviation of pooled proportions, coverage and interval width).

Results: For extreme proportions we found that the Freeman-Tukey transform provides better coverage and narrower intervals compared to the logit transformation, and for non-extreme proportions, both transformations demonstrated similar performance in terms of single proportions. The variability of Freeman-Tukey transformed proportions with sample size is only seen when the range of proportions under scrutiny are very small (~ 0.005), and the variability of the Freeman-Tukey transform's value occurs in the third decimal place (0.007). In meta-analysis, the Freeman-Tukey transformation consistently showed lower absolute deviation from the population parameter, with narrower confidence intervals, and improved coverage compared to the same meta-analyses using the logit transformation.

Conclusion: The results suggest that the Freeman-Tukey transform is to be preferred over the logit transformation in the meta-analysis of prevalence.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Medical Research Methodology
BMC Medical Research Methodology 医学-卫生保健
CiteScore
6.50
自引率
2.50%
发文量
298
审稿时长
3-8 weeks
期刊介绍: BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信