Ayushi Mishra, Abby Jackson, Xindan Wang, Daniel B Kearns
{"title":"The SinR•SlrR heteromer attenuates transcription of a long operon of flagellar genes in Bacillus subtilis.","authors":"Ayushi Mishra, Abby Jackson, Xindan Wang, Daniel B Kearns","doi":"10.1016/j.jmb.2025.169123","DOIUrl":null,"url":null,"abstract":"<p><p>During growth, Bacillus subtilis differentiates into subpopulations of motile individuals and non-motile chains, associated with dispersal and biofilm formation, respectively. The two cell types are dictated by the activity of the alternative sigma factor SigD encoded as the penultimate gene of the 27 kb long fla/che flagellar operon. The frequency of SigD-ON motile cells is increased by the heteromeric transcription factor SwrA•DegU that activates the fla/che promoter. Conversely, the frequency of motile cells is decreased by the heteromeric transcription factor SinR•SlrR, but the mechanism and location of inhibition is poorly understood. Here, using ChIP-Seq analysis, we determine the binding sites of the SinR•SlrR heteromer on the genome. We identified two sites within the fla/che operon that were both necessary and sufficient to attenuate transcript abundance by causing premature termination upstream of the gene that encodes SigD. Thus, cell motility and the transition to biofilm formation depend on the expression of a long operon governed by two opposing heteromeric transcription factors that operate at two different stages of the transcription cycle. More broadly, our study serves as a model for transcription factors that control transcriptional elongation and the regulation of long operons in bacteria.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"169123"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.169123","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During growth, Bacillus subtilis differentiates into subpopulations of motile individuals and non-motile chains, associated with dispersal and biofilm formation, respectively. The two cell types are dictated by the activity of the alternative sigma factor SigD encoded as the penultimate gene of the 27 kb long fla/che flagellar operon. The frequency of SigD-ON motile cells is increased by the heteromeric transcription factor SwrA•DegU that activates the fla/che promoter. Conversely, the frequency of motile cells is decreased by the heteromeric transcription factor SinR•SlrR, but the mechanism and location of inhibition is poorly understood. Here, using ChIP-Seq analysis, we determine the binding sites of the SinR•SlrR heteromer on the genome. We identified two sites within the fla/che operon that were both necessary and sufficient to attenuate transcript abundance by causing premature termination upstream of the gene that encodes SigD. Thus, cell motility and the transition to biofilm formation depend on the expression of a long operon governed by two opposing heteromeric transcription factors that operate at two different stages of the transcription cycle. More broadly, our study serves as a model for transcription factors that control transcriptional elongation and the regulation of long operons in bacteria.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.