Long-chain cationic gemini surfactants as drug retention adjuvant on liposomes. A methodological approach with atorvastatin

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yago Radziunas-Salinas , Vicente Domínguez-Arca , Alberto Pardo , Adriana Cambón , Pablo Taboada , Gerardo Prieto
{"title":"Long-chain cationic gemini surfactants as drug retention adjuvant on liposomes. A methodological approach with atorvastatin","authors":"Yago Radziunas-Salinas ,&nbsp;Vicente Domínguez-Arca ,&nbsp;Alberto Pardo ,&nbsp;Adriana Cambón ,&nbsp;Pablo Taboada ,&nbsp;Gerardo Prieto","doi":"10.1016/j.bbamem.2025.184419","DOIUrl":null,"url":null,"abstract":"<div><div>This study delves into the development and characterization of dipalmitoyl phosphatidylcholine (DPPC) liposomes incorporated with gemini surfactant (tetradecamethylene-1,14 bis(dimethyl tetradecyl ammonium bromide); 14-14-14) and atorvastatin, aimed at enhancing drug delivery efficiency for cardiovascular diseases. The integration of gemini surfactants into liposomes is investigated for its potential to improve atorvastatin encapsulation and retention, addressing the drug's poor water solubility and the limitations of conventional liposomal systems. Through a combination of dynamic light scattering (DLS), differential scanning calorimetry (DSC), and molecular dynamics (MD) simulations, the study reveals that the presence of gemini surfactants significantly reduces liposome size and polydispersity, indicative of a more uniform and potentially unilamellar structure. DSC analysis highlights a decrease in transition temperatures and an alteration in transition symmetry, suggesting enhanced stability and a favourable drug release profile at physiological temperatures. MD simulations provide insight into the internalization mechanism of gemini surfactants and atorvastatin within the liposomal bilayer, demonstrating their mutual incorporation facilitated by polar interactions. Spectrophotometry-based retention studies further confirmed that liposomes containing gemini surfactants exhibit superior atorvastatin retention capabilities, nearly doubling the encapsulation efficiency compared to conventional liposomes. This research highlights the promising role of gemini surfactant-incorporated liposomes as an efficient drug delivery platform for cardiovascular therapeutics, offering insights into the molecular interactions and structural dynamics underlying their enhanced performance.</div></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1867 4","pages":"Article 184419"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005273625000136","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study delves into the development and characterization of dipalmitoyl phosphatidylcholine (DPPC) liposomes incorporated with gemini surfactant (tetradecamethylene-1,14 bis(dimethyl tetradecyl ammonium bromide); 14-14-14) and atorvastatin, aimed at enhancing drug delivery efficiency for cardiovascular diseases. The integration of gemini surfactants into liposomes is investigated for its potential to improve atorvastatin encapsulation and retention, addressing the drug's poor water solubility and the limitations of conventional liposomal systems. Through a combination of dynamic light scattering (DLS), differential scanning calorimetry (DSC), and molecular dynamics (MD) simulations, the study reveals that the presence of gemini surfactants significantly reduces liposome size and polydispersity, indicative of a more uniform and potentially unilamellar structure. DSC analysis highlights a decrease in transition temperatures and an alteration in transition symmetry, suggesting enhanced stability and a favourable drug release profile at physiological temperatures. MD simulations provide insight into the internalization mechanism of gemini surfactants and atorvastatin within the liposomal bilayer, demonstrating their mutual incorporation facilitated by polar interactions. Spectrophotometry-based retention studies further confirmed that liposomes containing gemini surfactants exhibit superior atorvastatin retention capabilities, nearly doubling the encapsulation efficiency compared to conventional liposomes. This research highlights the promising role of gemini surfactant-incorporated liposomes as an efficient drug delivery platform for cardiovascular therapeutics, offering insights into the molecular interactions and structural dynamics underlying their enhanced performance.

Abstract Image

长链阳离子双子表面活性剂作为脂质体上的药物保留佐剂。使用阿托伐他汀的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochimica et biophysica acta. Biomembranes
Biochimica et biophysica acta. Biomembranes 生物-生化与分子生物学
CiteScore
8.20
自引率
5.90%
发文量
175
审稿时长
2.3 months
期刊介绍: BBA Biomembranes has its main focus on membrane structure, function and biomolecular organization, membrane proteins, receptors, channels and anchors, fluidity and composition, model membranes and liposomes, membrane surface studies and ligand interactions, transport studies, and membrane dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信