Chen Yang, Yue-Xin Zheng, Hong-Yi Gu, Hong Chen, Wei Li, Fang Li, Yu-Wang Bi, Jing Chen, Fu-Kun Wang, Qing-Qing Sun, Han-Bing Meng, Zuo-Hao Wu, Shu Yu, Jiang Gu, Yan Cheng
{"title":"Genomic characteristics, virulence potential, antimicrobial resistance profiles, and phylogenetic insights into Nocardia cyriacigeorgica.","authors":"Chen Yang, Yue-Xin Zheng, Hong-Yi Gu, Hong Chen, Wei Li, Fang Li, Yu-Wang Bi, Jing Chen, Fu-Kun Wang, Qing-Qing Sun, Han-Bing Meng, Zuo-Hao Wu, Shu Yu, Jiang Gu, Yan Cheng","doi":"10.1186/s12941-025-00791-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nocardia cyriacigeorgica, an opportunistic pathogen, is increasingly implicated in human infections. This pathogen predominantly causes pulmonary infections, leading to acute, subacute, or chronic necrotizing suppurative lesions, in severe cases, may progress to disseminated infections. Effective clinical diagnosis, prevention, and treatment strategies require a thorough understanding of its biological characteristics and pathogenic mechanisms. However, despite the rising incidence of nocardial diseases, research on the pathogenicity of N. cyriacigeorgica remains limited, primarily focusing on case reports and epidemiological studies. This study aimed to provide a comprehensive analysis of the genomic features, phylogenetic relationships, antimicrobial resistance profiles, and candidate virulence factors of N. cyriacigeorgica strains to inform future investigations into its pathogenesis.</p><p><strong>Methods: </strong>Whole-genome sequencing was conducted on five N. cyriacigeorgica strains isolated from patients with pulmonary infection at our hospital. This analysis utilized a combination of second-generation Illumina HiSeq and third-generation PacBio sequencing technologies. Additionally, publicly available genomic data from 58 strains in the National Center Biotechnology Information database were integrated, resulting in a dataset of 63 genomes. These genomes were subjected to comparative genomic analyses, including phylogenetic reconstruction, pan-genome evaluation, and gene distribution assessments.</p><p><strong>Results: </strong>Phylogenetic analysis identified five major clades within N. cyriacigeorgica. ANI analysis further subdivided clade B into five distinct subgroups. Pan-genome analysis revealed clade-specific orthogroups in the distribution of genes assigned to Clusters of Orthologous Groups, with clade A containing the highest number of clade-specific gene families. Comparative genomic analysis uncovered several potential pathogenic genes implicated in host cell invasion, phagosomal maturation arrest, and intracellular survival within macrophages, which were conserved across all analyzed strains. Notable differences in the distribution of enterobactin-encoding genes were observed among the clades. The mce3C gene also displayed variable distributions across clades; however, no correlation was established between its presence and strain source. Among the 63 strains, 27 were found to harbor both mce3C and mce4F genes, which were categorized into five distinct patterns. Furthermore, antibiotic resistance genes, including VanSO, VanRO, erm(O)-Irm, srmB, ermH, bcl, bla1, and cmIR, demonstrated clade-specific distribution patterns. Notably, the genes erm(O)-Irm, srmB, and ermH were associated with the isolation origin of the strains.</p><p><strong>Conclusions: </strong>This study provides a comprehensive evaluation of the genomic characteristics, potential virulence factors, antimicrobial resistance genes, and phylogenetic relationships of N. cyriacigeorgica. The findings offer valuable insights into the mechanisms underlying intracellular survival, replication within macrophages, and pathogen-host interactions in N. cyriacigeorgica infections. These results establish a foundation for future research into the pathogenesis and clinical management of N. cyriacigeorgica.</p>","PeriodicalId":8052,"journal":{"name":"Annals of Clinical Microbiology and Antimicrobials","volume":"24 1","pages":"22"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972502/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Clinical Microbiology and Antimicrobials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12941-025-00791-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Nocardia cyriacigeorgica, an opportunistic pathogen, is increasingly implicated in human infections. This pathogen predominantly causes pulmonary infections, leading to acute, subacute, or chronic necrotizing suppurative lesions, in severe cases, may progress to disseminated infections. Effective clinical diagnosis, prevention, and treatment strategies require a thorough understanding of its biological characteristics and pathogenic mechanisms. However, despite the rising incidence of nocardial diseases, research on the pathogenicity of N. cyriacigeorgica remains limited, primarily focusing on case reports and epidemiological studies. This study aimed to provide a comprehensive analysis of the genomic features, phylogenetic relationships, antimicrobial resistance profiles, and candidate virulence factors of N. cyriacigeorgica strains to inform future investigations into its pathogenesis.
Methods: Whole-genome sequencing was conducted on five N. cyriacigeorgica strains isolated from patients with pulmonary infection at our hospital. This analysis utilized a combination of second-generation Illumina HiSeq and third-generation PacBio sequencing technologies. Additionally, publicly available genomic data from 58 strains in the National Center Biotechnology Information database were integrated, resulting in a dataset of 63 genomes. These genomes were subjected to comparative genomic analyses, including phylogenetic reconstruction, pan-genome evaluation, and gene distribution assessments.
Results: Phylogenetic analysis identified five major clades within N. cyriacigeorgica. ANI analysis further subdivided clade B into five distinct subgroups. Pan-genome analysis revealed clade-specific orthogroups in the distribution of genes assigned to Clusters of Orthologous Groups, with clade A containing the highest number of clade-specific gene families. Comparative genomic analysis uncovered several potential pathogenic genes implicated in host cell invasion, phagosomal maturation arrest, and intracellular survival within macrophages, which were conserved across all analyzed strains. Notable differences in the distribution of enterobactin-encoding genes were observed among the clades. The mce3C gene also displayed variable distributions across clades; however, no correlation was established between its presence and strain source. Among the 63 strains, 27 were found to harbor both mce3C and mce4F genes, which were categorized into five distinct patterns. Furthermore, antibiotic resistance genes, including VanSO, VanRO, erm(O)-Irm, srmB, ermH, bcl, bla1, and cmIR, demonstrated clade-specific distribution patterns. Notably, the genes erm(O)-Irm, srmB, and ermH were associated with the isolation origin of the strains.
Conclusions: This study provides a comprehensive evaluation of the genomic characteristics, potential virulence factors, antimicrobial resistance genes, and phylogenetic relationships of N. cyriacigeorgica. The findings offer valuable insights into the mechanisms underlying intracellular survival, replication within macrophages, and pathogen-host interactions in N. cyriacigeorgica infections. These results establish a foundation for future research into the pathogenesis and clinical management of N. cyriacigeorgica.
期刊介绍:
Annals of Clinical Microbiology and Antimicrobials considers good quality, novel and international research of more than regional relevance. Research must include epidemiological and/or clinical information about isolates, and the journal covers the clinical microbiology of bacteria, viruses and fungi, as well as antimicrobial treatment of infectious diseases.
Annals of Clinical Microbiology and Antimicrobials is an open access, peer-reviewed journal focusing on information concerning clinical microbiology, infectious diseases and antimicrobials. The management of infectious disease is dependent on correct diagnosis and appropriate antimicrobial treatment, and with this in mind, the journal aims to improve the communication between laboratory and clinical science in the field of clinical microbiology and antimicrobial treatment. Furthermore, the journal has no restrictions on space or access; this ensures that the journal can reach the widest possible audience.