Nannuan Liu, Yue Xu, Genshan Gao, Yao Liu, Wenli Hu
{"title":"Bone Marrow Mesenchymal Stem Cell-Derived Exosomal USP10 Alleviates Cerebral Ischemia-Reperfusion Injury via Stabilizing SLC7A11 by Deubiquitination","authors":"Nannuan Liu, Yue Xu, Genshan Gao, Yao Liu, Wenli Hu","doi":"10.1002/jbt.70246","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Ubiquitination is a widespread posttranslational modification that plays an important biological regulatory role in cells. Research has reported that bone marrow mesenchymal stem cells (BMSCs) can inhibit cerebral ischemia-reperfusion injury. This study aims to explore the effect of deubiquitinating enzymes ubiquitin-specific peptidase 10 (USP10) modified BMSCs exosomes on cerebral ischemia-reperfusion injury and the underlying mechanism. PC12 cells were stimulated with oxygen–glucose deprivation/reoxygenation (OGD/R). The gene expression was detected by qRT-PCR and western blots. CCK8, EdU, and flow cytometry assays were conducted to assess cell viability, proliferation, and apoptosis, respectively. Fe<sup>2+</sup>, ROS, and GSH levels were detected to evaluate ferroptosis. Moreover, BMSCs were identified by flow cytometry, and exosomes were identified by transmission electron microscopy. The relationship between USP10 and solute carrier family 7 member 11 (SLC7A11) was confirmed by immunoprecipitation assay. In addition, the rat cerebral infarction model was conducted to explore the role of USP10-modified BMSCs exosomes in vivo. Overexpression of USP10 alleviated OGD/R-induced PC12 cell injury and ferroptosis. BMSCs exosomes could transport USP10, and USP10-modified BMSCs exosomes mitigated OGD/R-induced injury in PC12 cells. Besides, USP10 regulated SLC7A11 protein expression by mediating its deubiquitination. SLC7A11 knockdown restored the effects of USP10-modified BMSCs exosomes on OGD/R-induced PC12 cells. Moreover, USP10-modified BMSCs exosomes repressed cerebral infarction and ferroptosis in vivo. USP10-modified BMSCs exosomes protected against cerebral ischemia-reperfusion injury via mediating the deubiquitination of SLC7A11.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70246","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ubiquitination is a widespread posttranslational modification that plays an important biological regulatory role in cells. Research has reported that bone marrow mesenchymal stem cells (BMSCs) can inhibit cerebral ischemia-reperfusion injury. This study aims to explore the effect of deubiquitinating enzymes ubiquitin-specific peptidase 10 (USP10) modified BMSCs exosomes on cerebral ischemia-reperfusion injury and the underlying mechanism. PC12 cells were stimulated with oxygen–glucose deprivation/reoxygenation (OGD/R). The gene expression was detected by qRT-PCR and western blots. CCK8, EdU, and flow cytometry assays were conducted to assess cell viability, proliferation, and apoptosis, respectively. Fe2+, ROS, and GSH levels were detected to evaluate ferroptosis. Moreover, BMSCs were identified by flow cytometry, and exosomes were identified by transmission electron microscopy. The relationship between USP10 and solute carrier family 7 member 11 (SLC7A11) was confirmed by immunoprecipitation assay. In addition, the rat cerebral infarction model was conducted to explore the role of USP10-modified BMSCs exosomes in vivo. Overexpression of USP10 alleviated OGD/R-induced PC12 cell injury and ferroptosis. BMSCs exosomes could transport USP10, and USP10-modified BMSCs exosomes mitigated OGD/R-induced injury in PC12 cells. Besides, USP10 regulated SLC7A11 protein expression by mediating its deubiquitination. SLC7A11 knockdown restored the effects of USP10-modified BMSCs exosomes on OGD/R-induced PC12 cells. Moreover, USP10-modified BMSCs exosomes repressed cerebral infarction and ferroptosis in vivo. USP10-modified BMSCs exosomes protected against cerebral ischemia-reperfusion injury via mediating the deubiquitination of SLC7A11.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.