Shoucong Xiong, Leping Zhang, Yingxin Yang, Hongdi Zhou, Leilei Zhang
{"title":"Multisource Heterogeneous Information Selective Fusion Network for Fault Diagnosis of Rolling Bearings","authors":"Shoucong Xiong, Leping Zhang, Yingxin Yang, Hongdi Zhou, Leilei Zhang","doi":"10.1155/stc/6606543","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Till now, deep learning–based intelligent diagnosis models combined with multisource information have become popular, but tough issues like multisource feature extraction and information redundancy may sacrifice the models’ representational power and result in a degraded performance. Aiming at the above problems, this paper proposed a novel model called multisource heterogeneous information selective fusion network (MHI-SFN) for rolling bearing fault diagnosis. In MHI-SFN, multisource heterogeneous signals were stacked together and directly fed into model and grouped convolution was adopted to replace standard convolution throughout the structure, enabling kernels to firstly focus on the feature extraction of every individual signal and then perform efficient feature fusion work as needed. Then, selective kernel modules were designed to adaptively assign suitable kernel sizes and selectively fuse the valuable information between different scales of feature map from different signal sources. Lastly, channel attention was introduced to adaptively alleviate the information correlation and redundancy between the extracted features. Compared with other multisource information–based methods, MHI-SFH automatically solves the multisource feature fusion and information redundancy problems with its specially designed structure, avoiding complicated hand-crafted signal processing steps and achieving a powerful end-to-end intelligent fault diagnosis. The proposed method was experimentally verified on two rolling bearing datasets, and the results proved the feasibility and superiority of the MHI-SFN model.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/6606543","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/6606543","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Till now, deep learning–based intelligent diagnosis models combined with multisource information have become popular, but tough issues like multisource feature extraction and information redundancy may sacrifice the models’ representational power and result in a degraded performance. Aiming at the above problems, this paper proposed a novel model called multisource heterogeneous information selective fusion network (MHI-SFN) for rolling bearing fault diagnosis. In MHI-SFN, multisource heterogeneous signals were stacked together and directly fed into model and grouped convolution was adopted to replace standard convolution throughout the structure, enabling kernels to firstly focus on the feature extraction of every individual signal and then perform efficient feature fusion work as needed. Then, selective kernel modules were designed to adaptively assign suitable kernel sizes and selectively fuse the valuable information between different scales of feature map from different signal sources. Lastly, channel attention was introduced to adaptively alleviate the information correlation and redundancy between the extracted features. Compared with other multisource information–based methods, MHI-SFH automatically solves the multisource feature fusion and information redundancy problems with its specially designed structure, avoiding complicated hand-crafted signal processing steps and achieving a powerful end-to-end intelligent fault diagnosis. The proposed method was experimentally verified on two rolling bearing datasets, and the results proved the feasibility and superiority of the MHI-SFN model.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.