Advances in Nanofiber Cathodes for Aluminum-Ion Batteries

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Brindha Ramasubramanian, Sai Krishna Tipparaju, S. Vincent, Maciej Koperski, Vijila Chellappan, Seeram Ramakrishna
{"title":"Advances in Nanofiber Cathodes for Aluminum-Ion Batteries","authors":"Brindha Ramasubramanian,&nbsp;Sai Krishna Tipparaju,&nbsp;S. Vincent,&nbsp;Maciej Koperski,&nbsp;Vijila Chellappan,&nbsp;Seeram Ramakrishna","doi":"10.1007/s42765-024-00499-1","DOIUrl":null,"url":null,"abstract":"<div><p>Rechargeable aluminum-ion batteries (AIBs) possess a higher theoretical volumetric capacity than lithium-ion batteries (LIBs) and offer a sustainable, low-cost alternative. However, the performance of AIBs fails to meet commercial standards due to the challenges experienced including volume changes caused by interfacial issues, side reactions of the electrolyte with electrode, and low cyclic stability. These issues are attributed to the inability of existing cathode materials to perform effectively. To address these challenges, 1-dimensional (1D) structures, especially nanofiber (NF) cathodes offer a promising solution due to their higher aspect ratios, specific surface area, flexibility, and quantum scale effects. To date, there has been no comparative analysis of the electrochemical and structural performances of NF based cathodes in AIBs. Thus, this review focuses on the recent developments in various transition metal oxides and chalcogenides of (Mo, V, Mn, Ni, Cu, W, Se, and Co) along with carbon-based NFs as cathodes for AIBs. Challenges were observed in adopting trivalent Al<sup>3+</sup> cations as charge carriers and maintaining the structural integrity of the cathode. Several novel approaches have been developed to enhance electrical conductivity, including the incorporation of the metal oxides/chalcogenides with the carbon NF substrates, crystallizing the nanoparticles at high temperatures, and using self-assembly and templating techniques to create multi-dimensional NF films. Other battery components such as separators were replaced with carbonaceous structures in the MnSe based cathodes to increase ion mobility, and Mo current collectors to prevent dendrites. This review includes prospects aimed at improving performance and functionality, based on observations from the discussed work and innovations in AIBs such as compositing, surface functionalization, and defect engineering through ion doping.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 2","pages":"414 - 442"},"PeriodicalIF":17.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00499-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rechargeable aluminum-ion batteries (AIBs) possess a higher theoretical volumetric capacity than lithium-ion batteries (LIBs) and offer a sustainable, low-cost alternative. However, the performance of AIBs fails to meet commercial standards due to the challenges experienced including volume changes caused by interfacial issues, side reactions of the electrolyte with electrode, and low cyclic stability. These issues are attributed to the inability of existing cathode materials to perform effectively. To address these challenges, 1-dimensional (1D) structures, especially nanofiber (NF) cathodes offer a promising solution due to their higher aspect ratios, specific surface area, flexibility, and quantum scale effects. To date, there has been no comparative analysis of the electrochemical and structural performances of NF based cathodes in AIBs. Thus, this review focuses on the recent developments in various transition metal oxides and chalcogenides of (Mo, V, Mn, Ni, Cu, W, Se, and Co) along with carbon-based NFs as cathodes for AIBs. Challenges were observed in adopting trivalent Al3+ cations as charge carriers and maintaining the structural integrity of the cathode. Several novel approaches have been developed to enhance electrical conductivity, including the incorporation of the metal oxides/chalcogenides with the carbon NF substrates, crystallizing the nanoparticles at high temperatures, and using self-assembly and templating techniques to create multi-dimensional NF films. Other battery components such as separators were replaced with carbonaceous structures in the MnSe based cathodes to increase ion mobility, and Mo current collectors to prevent dendrites. This review includes prospects aimed at improving performance and functionality, based on observations from the discussed work and innovations in AIBs such as compositing, surface functionalization, and defect engineering through ion doping.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信