A comprehensive study on restoring properties in expired/aged ABS materials: advanced techniques, additive integration and challenges for sustainable industrial reuse and manufacturing

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
G. A. Munshi, Venkatesh M. Kulkarni
{"title":"A comprehensive study on restoring properties in expired/aged ABS materials: advanced techniques, additive integration and challenges for sustainable industrial reuse and manufacturing","authors":"G. A. Munshi,&nbsp;Venkatesh M. Kulkarni","doi":"10.1186/s40712-025-00260-5","DOIUrl":null,"url":null,"abstract":"<div><p>Acrylonitrile–Butadiene–Styrene (ABS) material known for its mechanical strengths and versatility in industrial applications deteriorates physically, chemically, and mechanically due to prolonged environmental exposure and loses its effectiveness over time, thus necessitating research into methods for rejuvenation and property restoration. This degradation impacts critical properties like impact resistance, tensile strength, and thermal stability, limiting ABS’s usability in manufacturing. This study explores advanced techniques for restoring aged ABS, including physical methods like reprocessing and thermal treatments, chemical restoration using solvents and additives, and mechanical enhancement through fibre or filler reinforcement. Each technique extends the lifespan of ABS materials, aligning with sustainable practices and the circular economy by reducing raw material consumption and minimising waste, enabling its reuse in industrial applications. Case studies on successful additive integration demonstrate the recycling process yielding 20% and 59% enhanced tensile and impact strength, improving material performance and durability after restoration. It was observed that the chain extenders in rABS boost the tensile and impact strength to 34.7 MPa and 6.3 kJ/m<sup>2</sup> from 20 MPa and 2.1 kJ/m<sup>2</sup> in aged ABS (almost 90% and 30% boost compared to virgin ABS). Studies also reflect that the effect of UV exposure reduces the impact and tensile strength by 50% and 25% after 6 and 12 months respectively. Stabilisers and plasticisers are observed to increase the service life and flexibility by 25% and 20% respectively in rABS. These findings demonstrate the significance of using mechanical and chemical stabilisers and mechanical reinforcement in ABS. The challenges include the cost-effectiveness, technical limitations, and regulatory concerns surrounding the use of restored ABS. Investing in biodegradable additives and smart materials for ABS restoration will drive sustainable innovation and enhance industrial circularity practices.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00260-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-025-00260-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Acrylonitrile–Butadiene–Styrene (ABS) material known for its mechanical strengths and versatility in industrial applications deteriorates physically, chemically, and mechanically due to prolonged environmental exposure and loses its effectiveness over time, thus necessitating research into methods for rejuvenation and property restoration. This degradation impacts critical properties like impact resistance, tensile strength, and thermal stability, limiting ABS’s usability in manufacturing. This study explores advanced techniques for restoring aged ABS, including physical methods like reprocessing and thermal treatments, chemical restoration using solvents and additives, and mechanical enhancement through fibre or filler reinforcement. Each technique extends the lifespan of ABS materials, aligning with sustainable practices and the circular economy by reducing raw material consumption and minimising waste, enabling its reuse in industrial applications. Case studies on successful additive integration demonstrate the recycling process yielding 20% and 59% enhanced tensile and impact strength, improving material performance and durability after restoration. It was observed that the chain extenders in rABS boost the tensile and impact strength to 34.7 MPa and 6.3 kJ/m2 from 20 MPa and 2.1 kJ/m2 in aged ABS (almost 90% and 30% boost compared to virgin ABS). Studies also reflect that the effect of UV exposure reduces the impact and tensile strength by 50% and 25% after 6 and 12 months respectively. Stabilisers and plasticisers are observed to increase the service life and flexibility by 25% and 20% respectively in rABS. These findings demonstrate the significance of using mechanical and chemical stabilisers and mechanical reinforcement in ABS. The challenges include the cost-effectiveness, technical limitations, and regulatory concerns surrounding the use of restored ABS. Investing in biodegradable additives and smart materials for ABS restoration will drive sustainable innovation and enhance industrial circularity practices.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信