A comprehensive study on restoring properties in expired/aged ABS materials: advanced techniques, additive integration and challenges for sustainable industrial reuse and manufacturing
{"title":"A comprehensive study on restoring properties in expired/aged ABS materials: advanced techniques, additive integration and challenges for sustainable industrial reuse and manufacturing","authors":"G. A. Munshi, Venkatesh M. Kulkarni","doi":"10.1186/s40712-025-00260-5","DOIUrl":null,"url":null,"abstract":"<div><p>Acrylonitrile–Butadiene–Styrene (ABS) material known for its mechanical strengths and versatility in industrial applications deteriorates physically, chemically, and mechanically due to prolonged environmental exposure and loses its effectiveness over time, thus necessitating research into methods for rejuvenation and property restoration. This degradation impacts critical properties like impact resistance, tensile strength, and thermal stability, limiting ABS’s usability in manufacturing. This study explores advanced techniques for restoring aged ABS, including physical methods like reprocessing and thermal treatments, chemical restoration using solvents and additives, and mechanical enhancement through fibre or filler reinforcement. Each technique extends the lifespan of ABS materials, aligning with sustainable practices and the circular economy by reducing raw material consumption and minimising waste, enabling its reuse in industrial applications. Case studies on successful additive integration demonstrate the recycling process yielding 20% and 59% enhanced tensile and impact strength, improving material performance and durability after restoration. It was observed that the chain extenders in rABS boost the tensile and impact strength to 34.7 MPa and 6.3 kJ/m<sup>2</sup> from 20 MPa and 2.1 kJ/m<sup>2</sup> in aged ABS (almost 90% and 30% boost compared to virgin ABS). Studies also reflect that the effect of UV exposure reduces the impact and tensile strength by 50% and 25% after 6 and 12 months respectively. Stabilisers and plasticisers are observed to increase the service life and flexibility by 25% and 20% respectively in rABS. These findings demonstrate the significance of using mechanical and chemical stabilisers and mechanical reinforcement in ABS. The challenges include the cost-effectiveness, technical limitations, and regulatory concerns surrounding the use of restored ABS. Investing in biodegradable additives and smart materials for ABS restoration will drive sustainable innovation and enhance industrial circularity practices.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00260-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-025-00260-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Acrylonitrile–Butadiene–Styrene (ABS) material known for its mechanical strengths and versatility in industrial applications deteriorates physically, chemically, and mechanically due to prolonged environmental exposure and loses its effectiveness over time, thus necessitating research into methods for rejuvenation and property restoration. This degradation impacts critical properties like impact resistance, tensile strength, and thermal stability, limiting ABS’s usability in manufacturing. This study explores advanced techniques for restoring aged ABS, including physical methods like reprocessing and thermal treatments, chemical restoration using solvents and additives, and mechanical enhancement through fibre or filler reinforcement. Each technique extends the lifespan of ABS materials, aligning with sustainable practices and the circular economy by reducing raw material consumption and minimising waste, enabling its reuse in industrial applications. Case studies on successful additive integration demonstrate the recycling process yielding 20% and 59% enhanced tensile and impact strength, improving material performance and durability after restoration. It was observed that the chain extenders in rABS boost the tensile and impact strength to 34.7 MPa and 6.3 kJ/m2 from 20 MPa and 2.1 kJ/m2 in aged ABS (almost 90% and 30% boost compared to virgin ABS). Studies also reflect that the effect of UV exposure reduces the impact and tensile strength by 50% and 25% after 6 and 12 months respectively. Stabilisers and plasticisers are observed to increase the service life and flexibility by 25% and 20% respectively in rABS. These findings demonstrate the significance of using mechanical and chemical stabilisers and mechanical reinforcement in ABS. The challenges include the cost-effectiveness, technical limitations, and regulatory concerns surrounding the use of restored ABS. Investing in biodegradable additives and smart materials for ABS restoration will drive sustainable innovation and enhance industrial circularity practices.