Combination Strategy of Melt-Blowing and Breath-Figure Enabling Scale-Up Production of Hierarchically Structured Polylactic Acid (PLA) Nonwovens for Durable and Efficient Air Filtration

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yintao Zhao, Shuai Zhang, Di Yan, Jinfa Ming, Xuefang Wang, Xin Ning
{"title":"Combination Strategy of Melt-Blowing and Breath-Figure Enabling Scale-Up Production of Hierarchically Structured Polylactic Acid (PLA) Nonwovens for Durable and Efficient Air Filtration","authors":"Yintao Zhao,&nbsp;Shuai Zhang,&nbsp;Di Yan,&nbsp;Jinfa Ming,&nbsp;Xuefang Wang,&nbsp;Xin Ning","doi":"10.1007/s42765-025-00511-2","DOIUrl":null,"url":null,"abstract":"<div><p>Biodegradable polylactic acid (PLA) melt-blown nonwovens (MN) are regarded as the promising alternatives for petroleum-based air filtration mediums. However, the filtration performances of most PLA MN were greatly relied on their electrostatic effects which would suffer from inevitable attenuation caused by environment conditions during long-term storage. Herein, the innovative combination of breath-figure (BF) and melt-blowing technologies was proposed to prepare the hierarchically structured PLA MN-bearing BF net pattern (PMBP) for enhanced air filtration. Initially, melt-blowing technology was employed to conduct large-scale preparation of PLA MN with a low-pressure drop of 25.7 Pa but an unsatisfactory PM<sub>2.5</sub> (aerodynamic diameter below 2.5 μm) filtration efficiency of 59.5%. At the optimized BF processing conditions involving polymer concentration of 0.5 wt% in hexafluoroisopropanol and relative humidity of 50%, the resultant BF net pattern exhibited uniformly microporous structure with the average pore size low to 1.02 μm. The integration of large-pore PLA MN and small-pore net pattern endowed PMBP with hierarchical structures, which induced PMBP displaying excellent filtration performances (filtration efficiency of 95.8% and pressure drop of 39.3 Pa), and eliminating over 99% of PM<sub>2.5</sub> particles within 3 min in the actual smoke test, even without the benefit of static charges. The filtration performances of the PMBP remained stable in high-humidity environments and during long-term storage. Furthermore, the PMBP also exhibited exceptional self-cleaning properties. Overall, this work opens up a promising approach to develop fully bio-based and high-performance filtration materials with hierarchical structures.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 2","pages":"620 - 632"},"PeriodicalIF":17.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-025-00511-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biodegradable polylactic acid (PLA) melt-blown nonwovens (MN) are regarded as the promising alternatives for petroleum-based air filtration mediums. However, the filtration performances of most PLA MN were greatly relied on their electrostatic effects which would suffer from inevitable attenuation caused by environment conditions during long-term storage. Herein, the innovative combination of breath-figure (BF) and melt-blowing technologies was proposed to prepare the hierarchically structured PLA MN-bearing BF net pattern (PMBP) for enhanced air filtration. Initially, melt-blowing technology was employed to conduct large-scale preparation of PLA MN with a low-pressure drop of 25.7 Pa but an unsatisfactory PM2.5 (aerodynamic diameter below 2.5 μm) filtration efficiency of 59.5%. At the optimized BF processing conditions involving polymer concentration of 0.5 wt% in hexafluoroisopropanol and relative humidity of 50%, the resultant BF net pattern exhibited uniformly microporous structure with the average pore size low to 1.02 μm. The integration of large-pore PLA MN and small-pore net pattern endowed PMBP with hierarchical structures, which induced PMBP displaying excellent filtration performances (filtration efficiency of 95.8% and pressure drop of 39.3 Pa), and eliminating over 99% of PM2.5 particles within 3 min in the actual smoke test, even without the benefit of static charges. The filtration performances of the PMBP remained stable in high-humidity environments and during long-term storage. Furthermore, the PMBP also exhibited exceptional self-cleaning properties. Overall, this work opens up a promising approach to develop fully bio-based and high-performance filtration materials with hierarchical structures.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信