{"title":"Programmable and Scalable Embroidery Textile Resistive Pressure Sensors for Integrated Multifunctional Smart Wearable Systems","authors":"Yiduo Yang, Yu Chen, Yang Liu, Rong Yin","doi":"10.1007/s42765-024-00506-5","DOIUrl":null,"url":null,"abstract":"<div><p>Conformable and breathable textile structures are ideal for flexible wearable pressure sensors, yet challenges remain in scalable fabrication, easy integration, and programmability. This study presents a cost-effective and customizable method to create fully textile-based pressure sensors using machine embroidery, enabling seamless integration into smart wearable systems. Two sensing configurations were developed: a single-layer satin block embroidered with conductive yarn, which exhibited high piezoresistivity, fast response (35 ms), quick recovery (16 ms), and robust durability over 5000 press-and-release cycles, proven effective for monitoring activities such as plantar pressure and muscle contraction, and making it suitable for personalized health and fitness applications. The second configuration, a double-layer embroidery sensor with a conductive path and two parallel spacers anchored beneath a satin block, allows for array integration with minimal wiring, demonstrated by a 3 × 3 sensing array that, with the help of a convolutional neural network (CNN) machine learning model, accurately recognized handwritten numbers (0–9) with a 98.5% accuracy, showing its potential for user authentication and secure passcode entry. These findings underscore the potential of machine embroidery for developing scalable, integrated, and high-performance intelligent textile systems, paving the way for wearable technologies that are customizable, comfortable, and aesthetically appealing for a wide range of applications.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 2","pages":"574 - 586"},"PeriodicalIF":17.2000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00506-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Conformable and breathable textile structures are ideal for flexible wearable pressure sensors, yet challenges remain in scalable fabrication, easy integration, and programmability. This study presents a cost-effective and customizable method to create fully textile-based pressure sensors using machine embroidery, enabling seamless integration into smart wearable systems. Two sensing configurations were developed: a single-layer satin block embroidered with conductive yarn, which exhibited high piezoresistivity, fast response (35 ms), quick recovery (16 ms), and robust durability over 5000 press-and-release cycles, proven effective for monitoring activities such as plantar pressure and muscle contraction, and making it suitable for personalized health and fitness applications. The second configuration, a double-layer embroidery sensor with a conductive path and two parallel spacers anchored beneath a satin block, allows for array integration with minimal wiring, demonstrated by a 3 × 3 sensing array that, with the help of a convolutional neural network (CNN) machine learning model, accurately recognized handwritten numbers (0–9) with a 98.5% accuracy, showing its potential for user authentication and secure passcode entry. These findings underscore the potential of machine embroidery for developing scalable, integrated, and high-performance intelligent textile systems, paving the way for wearable technologies that are customizable, comfortable, and aesthetically appealing for a wide range of applications.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.