Dual-View Structural Similarity Subspace Clustering for Hyperspectral Band Selection

Dongkai Yan;Xudong Sun;Jiahua Zhang;Xiaodi Shang
{"title":"Dual-View Structural Similarity Subspace Clustering for Hyperspectral Band Selection","authors":"Dongkai Yan;Xudong Sun;Jiahua Zhang;Xiaodi Shang","doi":"10.1109/LGRS.2025.3554356","DOIUrl":null,"url":null,"abstract":"Band selection (BS) is a vital technique for improving efficiency of hyperspectral image (HSI) processing. This letter proposes a dual-view structural similarity subspace clustering model (DVS3C) for BS. Traditional low-rank subspace clustering (LRSC) methods rely solely on single-view data (e.g., original HSI), potentially leading to the loss of critical information (e.g., spatial structures) and insufficient exploitation of the multi-dimensional features of HSI for optimal BS. To do so, DVS3C constructs a spatial view alongside the spectral view, leveraging global spectral-spatial information through subspace clustering to achieve complementary advantages between views. Besides, to overcome LRSC’s limitations in capturing band local structure, DVS3C introduces a structural similarity matrix to deeply exploit intraview neighborhood relationships of bands, further reducing band redundancy. Ultimately, an adaptive dual-view fusion strategy that iteratively optimizes a consensus matrix while dynamically adjusting the contribution of each view is designed to ensure view consistency. Experimental results on four public datasets demonstrate its remarkable stability and superiority. The source code is available at <uri>https://github.com/ydk0912/DVS3C</uri>.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10938204/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Band selection (BS) is a vital technique for improving efficiency of hyperspectral image (HSI) processing. This letter proposes a dual-view structural similarity subspace clustering model (DVS3C) for BS. Traditional low-rank subspace clustering (LRSC) methods rely solely on single-view data (e.g., original HSI), potentially leading to the loss of critical information (e.g., spatial structures) and insufficient exploitation of the multi-dimensional features of HSI for optimal BS. To do so, DVS3C constructs a spatial view alongside the spectral view, leveraging global spectral-spatial information through subspace clustering to achieve complementary advantages between views. Besides, to overcome LRSC’s limitations in capturing band local structure, DVS3C introduces a structural similarity matrix to deeply exploit intraview neighborhood relationships of bands, further reducing band redundancy. Ultimately, an adaptive dual-view fusion strategy that iteratively optimizes a consensus matrix while dynamically adjusting the contribution of each view is designed to ensure view consistency. Experimental results on four public datasets demonstrate its remarkable stability and superiority. The source code is available at https://github.com/ydk0912/DVS3C.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信