FreqAF: A New Frequency Attention Fusion Spectral Estimation Method for Radar Super-Resolution Imaging

Yvyang Gao;Ganggang Dong
{"title":"FreqAF: A New Frequency Attention Fusion Spectral Estimation Method for Radar Super-Resolution Imaging","authors":"Yvyang Gao;Ganggang Dong","doi":"10.1109/LGRS.2025.3555259","DOIUrl":null,"url":null,"abstract":"Frequency estimation was a fundamental problem in radar imaging. The classical Fourier spectral analysis suffered from the Rayleigh limit. The imaging performance deteriorated rapidly in low SNR conditions. In addition, the prior knowledge on the number of signal sources was required. To solve the problems, a new data-driven spectral estimation method via frequency attention fusion (FreqAF) was proposed in this letter. Different from the preceding works, the signal spectral were estimated by a deep architecture neural network automatically. The echo signal was first dechirped according to the radar parameters. It is then fed into a deep architecture for spectral estimation. The proposed architecture was composed of three phases, the decomposition, the FreqAF, and the projection. In the decomposition phase, the individual single-frequency components were estimated from the input dechirped signal. The components were dynamically fused in a delicate FreqAF module. The frequencies were obtained finally in the projection phase. Numerical experiments are performed to verify the proposed method.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10943128/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Frequency estimation was a fundamental problem in radar imaging. The classical Fourier spectral analysis suffered from the Rayleigh limit. The imaging performance deteriorated rapidly in low SNR conditions. In addition, the prior knowledge on the number of signal sources was required. To solve the problems, a new data-driven spectral estimation method via frequency attention fusion (FreqAF) was proposed in this letter. Different from the preceding works, the signal spectral were estimated by a deep architecture neural network automatically. The echo signal was first dechirped according to the radar parameters. It is then fed into a deep architecture for spectral estimation. The proposed architecture was composed of three phases, the decomposition, the FreqAF, and the projection. In the decomposition phase, the individual single-frequency components were estimated from the input dechirped signal. The components were dynamically fused in a delicate FreqAF module. The frequencies were obtained finally in the projection phase. Numerical experiments are performed to verify the proposed method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信