{"title":"Graph-Based Indoor 3D Pedestrian Location Tracking With Inertial-Only Perception","authors":"Shiyu Bai;Weisong Wen;Dongzhe Su;Li-Ta Hsu","doi":"10.1109/TMC.2025.3526196","DOIUrl":null,"url":null,"abstract":"Pedestrian location tracking in emergency responses and environmental surveys of indoor scenarios tend to rely only on their own mobile devices, reducing the usage of external services. Low-cost and small-sized inertial measurement units (IMU) have been widely distributed in mobile devices. However, they suffer from high-level noises, leading to drift in position estimation over time. In this work, we present a graph-based indoor 3D pedestrian location tracking with inertial-only perception. The proposed method uses onboard inertial sensors in mobile devices alone for pedestrian state estimation in a simultaneous localization and mapping (SLAM) mode. It starts with a deep vertical odometry-aided 3D pedestrian dead reckoning (PDR) to predict the position in 3D space. Environment-induced behaviors, such as corner-turning and stair-taking, are regarded as landmarks. Multi-hypothesis loop closures are formed using statistical methods to handle ambiguous data association. A factor graph optimization fuses 3D PDR and behavior loop closures for state estimation. Experiments in different scenarios are performed using a smartphone to evaluate the performance of the proposed method, which can achieve better location tracking than current learning-based and filtering-based methods. Moreover, the proposed method is also discussed in different aspects, including the accuracy of offline optimization and proposed height regression, and the reliability of the multi-hypothesis behavior loop closures. The video (<uri>YouTube</uri>) or (<uri>BiliBili</uri>) is also shared to display our research.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 5","pages":"4481-4495"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10829797/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Pedestrian location tracking in emergency responses and environmental surveys of indoor scenarios tend to rely only on their own mobile devices, reducing the usage of external services. Low-cost and small-sized inertial measurement units (IMU) have been widely distributed in mobile devices. However, they suffer from high-level noises, leading to drift in position estimation over time. In this work, we present a graph-based indoor 3D pedestrian location tracking with inertial-only perception. The proposed method uses onboard inertial sensors in mobile devices alone for pedestrian state estimation in a simultaneous localization and mapping (SLAM) mode. It starts with a deep vertical odometry-aided 3D pedestrian dead reckoning (PDR) to predict the position in 3D space. Environment-induced behaviors, such as corner-turning and stair-taking, are regarded as landmarks. Multi-hypothesis loop closures are formed using statistical methods to handle ambiguous data association. A factor graph optimization fuses 3D PDR and behavior loop closures for state estimation. Experiments in different scenarios are performed using a smartphone to evaluate the performance of the proposed method, which can achieve better location tracking than current learning-based and filtering-based methods. Moreover, the proposed method is also discussed in different aspects, including the accuracy of offline optimization and proposed height regression, and the reliability of the multi-hypothesis behavior loop closures. The video (YouTube) or (BiliBili) is also shared to display our research.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.