The berth allocation problem in bulk terminals under uncertainty

IF 3.7 4区 管理学 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Filipe Rodrigues
{"title":"The berth allocation problem in bulk terminals under uncertainty","authors":"Filipe Rodrigues","doi":"10.1016/j.orp.2025.100334","DOIUrl":null,"url":null,"abstract":"<div><div>Uncertainty is critical in bulk terminals because it is inherent to many operations. In particular, the berth allocation problem (BAP) is greatly affected by the uncertain arrival times of the vessels. In this paper, we propose the first distributionally robust optimization (DRO) model for the BAP in bulk terminals, where the probability distribution of the arrival times is assumed to be unknown but belongs to an ambiguity set. To solve the model, we use an exact decomposition algorithm (DA) in which the probability distribution information is iteratively included in the master problem through optimal dual cuts. The DA is then enhanced with two improvement strategies to reduce the associated computational time; however, with these strategies, the DA may no longer be exact and is still inefficient for solving large-scale instances. To overcome these issues, we propose a modified exact DA where the dual cuts used in the original DA are replaced by powerful primal cuts that drastically reduce the time required to solve the DRO model, making it possible to handle large-scale instances. The reported computational experiments also show clear benefits of using DRO to tackle uncertainty compared to stochastic programming and robust optimization.</div></div>","PeriodicalId":38055,"journal":{"name":"Operations Research Perspectives","volume":"14 ","pages":"Article 100334"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Perspectives","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214716025000107","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Uncertainty is critical in bulk terminals because it is inherent to many operations. In particular, the berth allocation problem (BAP) is greatly affected by the uncertain arrival times of the vessels. In this paper, we propose the first distributionally robust optimization (DRO) model for the BAP in bulk terminals, where the probability distribution of the arrival times is assumed to be unknown but belongs to an ambiguity set. To solve the model, we use an exact decomposition algorithm (DA) in which the probability distribution information is iteratively included in the master problem through optimal dual cuts. The DA is then enhanced with two improvement strategies to reduce the associated computational time; however, with these strategies, the DA may no longer be exact and is still inefficient for solving large-scale instances. To overcome these issues, we propose a modified exact DA where the dual cuts used in the original DA are replaced by powerful primal cuts that drastically reduce the time required to solve the DRO model, making it possible to handle large-scale instances. The reported computational experiments also show clear benefits of using DRO to tackle uncertainty compared to stochastic programming and robust optimization.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Operations Research Perspectives
Operations Research Perspectives Mathematics-Statistics and Probability
CiteScore
6.40
自引率
0.00%
发文量
36
审稿时长
27 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信